5,608 research outputs found

    Shifting Patterns of Nitrogen Excretion and Amino Acid Catabolism Capacity during the Life Cycle of the Sea Lamprey (\u3cem\u3ePetromyzon mariunus\u3c/em\u3e)

    Get PDF
    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (JAmm) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising from the ingestion of protein rich blood from their prey/hosts. The subsequent generation of energy-rich carbon skeletons can then be oxidized or retained for glycogen and fatty acid synthesis, which are essential fuels for the upstream migratory and spawning phases of the sea lamprey’s life cycle

    Expression of three GnRH receptors in specific tissues in male and female sea lampreys Petromyzon marinus at three distinct life stages

    Get PDF
    Two recently cloned gonadotropin-releasing hormone (GnRH) receptors (lamprey GnRH-R-2 and lamprey GnRH-R-3) along with lamprey (l) GnRH-R-1 were shown to share similar structural features and amino acid motifs common to other vertebrate receptors. Here we report on our findings of RNA expression of these three GnRH receptors in the three major life stages (larval, parasitic, and adult phases) of the sea lamprey, Petromyzon marinus, a basal vertebrate. For each stage, we examined the expression of messenger RNA encoding the receptors in the brain, pituitary, gonad, heart, muscle, liver, eye, intestine, kidney, skin, thyroid, gill, and endostyle by RT-PCR. In adult lampreys, the spatial expression of the three receptors in the brain and pituitary was investigated by in situ hybridization. In general, the receptors were more widely expressed in adult tissues as compared to parasitic-phase tissues and least widely expressed in the larval tissues. There were noted differences in male and female lampreys in the adult and parasitic phases for all three receptors. The data showed the presence of all three receptor transcripts in brain tissues for adult and parasitic phases and all three receptor transcripts were expressed in the adult pituitaries, but not in the parasitic pituitaries. However, in the larval phase, only lGnRH-R-1 was expressed in the larval brain and pituitary. In situ hybridization revealed that lGnRH-R-2 and -3 were expressed in the pineal tissue of adult female lampreys while lGnRH-R-1 was expressed in the pineal in adult male lampreys, all restricted to the pineal pellucida. In summary, these data provide an initial comparative analysis of expression of three lamprey GnRH receptors suggesting differential regulation within males and females at three different life/reproductive stages

    Update of Distribution of the Chestnut Lamprey in Arkansas

    Get PDF
    Most lamprey species other than sea lampreys have been poorly studied in North America. The chestnut lamprey, Ichthyomyzon castaneus, has a distribution within the Mississippi River and Hudson Bay drainage systems, and the Great Lakes. Since the text Fishes of Arkansas was published in 1988, few papers have been published to update the statewide distribution of this lamprey. We incorporated our electrofishing sampling results with gray and published literature to describe the distribution of this species in the drainage basins of the State of Arkansas. Reported are records of 250 chestnut lamprey specimens, over a 90 year period, from 47 different waterbodies in the state

    Rapid Metabolic Recovery Following Vigorous Exercise in Burrow-Dwelling Larval Sea Lampreys (\u3cem\u3ePetromyzon marinus\u3c/em\u3e)

    Get PDF
    Although the majority of the sea lamprey’s (Petromyzon marinus) life cycle is spent as a burrow-dwelling larva, or ammocoete, surprisingly little is known about intermediary metabolism in this stage of the lamprey’s life history. In this study, larval sea lampreys (ammocoetes) were vigorously exercised for 5 min, and their patterns of metabolic fuel depletion and replenishment and oxygen consumption, along with measurements of net whole-body acid and ion movements, were followed during a 4–24-h postexercise recovery period. Exercise led to initial five- to sixfold increases in postexercise oxygen consumption, which remained significantly elevated by 1.5–2.0 times for the next 3 h. Exercise also led to initial 55% drops in whole-body phosphocreatine, which was restored by 0.5 h, but no significant changes in whole-body adenosine triphosphate were observed. Whole-body glycogen concentrations dropped by 70% immediately following exercise and were accompanied by a simultaneous ninefold increase in lactate. Glycogen and lactate were quickly restored to resting levels after 0.5 and 2.0 h, respectively. The presence of an associated metabolic acidosis was supported by very high rates of metabolic acid excretion, which approached 1,000 nmol g-1 during the first 2 h of postexercise recovery. Exercise-induced ion imbalances were also rapidly alleviated, as initially high rates of net Na+ and Cl- loss (—1,200 nmol g-1h-1 and —1,800 nmol g-1h-1 respectively) were corrected within 1–2 h. Although larval sea lampreys spend most of their time burrowed, they are adept at performing and recovering from vigorous anaerobic exercise. Such attributes could be important when these animals are vigorously swimming or burrowing as they evade predators or forage

    Investigations into the structure and function of the exocrine pancreas of lampreys. [Translation from: Morph.Jb. 110 245-269, 1967.]

    Get PDF
    As representatives of the most primitive of recent vertebrate groups, lampreys show fundamental differences in different features of organisation to the species of the remaining classes of vertebrates. The topical distinction between exocrine and endocrine pancreas is also considered among the morphological peculiarities of Petromyzontida. This study aims to contribute to a further explanation of this phenomenon. 50 brook lampreys were histologically examined

    Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems

    Get PDF
    Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function

    Genomic donor cassette sharing during VLRA and VLRC assembly in jawless vertebrates

    No full text
    Lampreys possess two T-like lymphocyte lineages that express either variable lymphocyte receptor (VLR) A or VLRC antigen receptors. VLRA+ and VLRC+ lymphocytes share many similarities with the two principal T-cell lineages of jawed vertebrates expressing the αβ and γδ T-cell receptors (TCRs). During the assembly of VLR genes, several types of genomic cassettes are inserted, in step-wise fashion, into incomplete germ-line genes to generate the mature forms of antigen receptor genes. Unexpectedly, the structurally variable components of VLRA and VLRC receptors often possess partially identical sequences; this phenomenon of module sharing between these two VLR isotypes occurs in both lampreys and hagfishes. By contrast, VLRA and VLRC molecules typically do not share their building blocks with the structurally analogous VLRB receptors that are expressed by B-like lymphocytes. Our studies reveal that VLRA and VLRC germ-line genes are situated in close proximity to each other in the lamprey genome and indicate the interspersed arrangement of isotype-specific and shared genomic donor cassettes; these features may facilitate the shared cassette use. The genomic structure of the VLRA/VLRC locus in lampreys is reminiscent of the interspersed nature of the TCRA/TCRD locus in jawed vertebrates that also allows the sharing of some variable gene segments during the recombinatorial assembly of TCR genes

    A New Nonparasitic Species of the Holarctic Lamprey Genus Lethenteron Creaser and Hubbs, 1922, (Petromyzonidae) from Northwestern North America with Notes on Other Species of the Same Genus

    Get PDF
    A new nonparasitic lamprey, Lethenteron alaskense from Alaska and Northwest Territories is described and illustrated. The holotype (No. NMC 76-614) is deposited in the National Museum of Natural Sciences, Ottawa, Canada. The study was based on 67 metamorphosed specimens. The species, by its permanently non-functional intestinal tract and weak dentition, smaller disc and much smaller size (maximum 188 mm), is easily separable from the parasitic Lenthenteron japonicum (maximum length 625 mm) found in the same areas. It is distinguishable from nonparasitic L. lamottenii, found in eastern and southern North America, by 1) a generally weaker dentition but possessing more anterials and supplementary marginals; 2) typically with five velar tentacles as opposed to seven in L. lamottenii; 3) differences in pigmentation pattern of the second dorsal fin and a lack of dark pigmentation on the gular region; 4) smaller size in comparison to 299 mm maximum length in L. lamottenii; and 5) distinct areas of geographical distribution separated from each other by 2400 km. All three, L. alaskense, L. lamottenii, and L. japonicum have usually 66 to 72 trunk myomeres. L. alaskense, by its higher number of myomeres is separable from two other nonparasitic species: L. reissneri from Asia with less than 64 myomeres and L. meridionale from eastern tributaries of the Gulf of Mexico with 50 to 58 myomeres

    Demography of sea lamprey (Petromyzon marinus) ammocoete populations in relation to potential spawning-migration obstructions

    Get PDF
    Copyright © 2017 John Wiley & Sons, Ltd. Recent advances in the understanding of lamprey migrations have led to concerns over the impacts of obstructions on the demography of many species. This study investigated sea lamprey (Petromyzon marinus) larvae (ammocoetes) in two adjacent but contrasting rivers, both designated Special Areas of Conservation under the EC Habitats Directive (92/43/EEC), one (the River Wye) with a small number of potential migration obstructions in its upper reaches and one (the River Usk) with obstacles along its course. The geographical distributions, densities and age structures of the ammocoete populations were examined in relation to the locations of potential obstructions to the spawning migrations of anadromous adults. A minimum of three age classes was recorded as far as 200 km upstream of the mouth of the River Wye (93% of the length of the mainstem), demonstrating that adults regularly migrate to the upper reaches of the catchment (downstream of a natural waterfall). By contrast, sea lamprey ammocoetes appeared to be absent (in suitable habitat) from 20 km (17%) of the River Usk, and there was a reduction in density, prevalence and the number of age classes upstream of two putative spawning-migration obstructions. This study highlights some of the potential impacts of habitat fragmentation by obstructions on the spawning migrations of anadromous species, as inferred from ammocoete demography. When used in combination to compare contiguous reaches, ammocoete densities, prevalence and age structure may be a useful indicator of which structures are likely to be important migration obstructions, and where further studies or mitigation efforts should be focused. It is likely that passage past some obstructions is enhanced if high river levels occur during the spawning migration, but there is a need to facilitate passage during all conditions, to improve access to under-exploited spawning and nursery areas
    • …
    corecore