160 research outputs found

    A Theory of Explicit Substitutions with Safe and Full Composition

    Full text link
    Many different systems with explicit substitutions have been proposed to implement a large class of higher-order languages. Motivations and challenges that guided the development of such calculi in functional frameworks are surveyed in the first part of this paper. Then, very simple technology in named variable-style notation is used to establish a theory of explicit substitutions for the lambda-calculus which enjoys a whole set of useful properties such as full composition, simulation of one-step beta-reduction, preservation of beta-strong normalisation, strong normalisation of typed terms and confluence on metaterms. Normalisation of related calculi is also discussed.Comment: 29 pages Special Issue: Selected Papers of the Conference "International Colloquium on Automata, Languages and Programming 2008" edited by Giuseppe Castagna and Igor Walukiewic

    Comparing Calculi of Explicit Substitutions with Eta-reduction1 1Partially supported by the Brazilian CNPq research council grant number 47488101-6.

    Get PDF
    AbstractThe past decade has seen an explosion of work on calculi of explicit substitutions. Numerous work has illustrated the usefulness of these calculi for practical notions like the implementation of typed functional programming languages and higher order proof assistants. Three styles of explicit substitutions are treated in this paper: the λσ and the λse which have proved useful for solving practical problems like higher order unification, and the suspension calculus related to the implementation of the language λ-Prolog. We enlarge the suspension calculus with an adequate eta-reduction which we show to preserve termination and confluence of the associated substitution calculus and to correspond to the eta-reductions of the other two calculi. Additionally, we prove that λσ and λse as well as λσ and the suspension calculus are non comparable while λse is more adequate than the suspension calculus

    Metaconfluence of Calculi with Explicit Substitutions at a Distance

    Get PDF
    Confluence is a key property of rewriting calculi that guarantees uniqueness of normal-forms when they exist. Metaconfluence is even more general, and guarantees confluence on open/meta terms, i.e. terms with holes, called metavariables that can be filled up with other (open/meta) terms. The difficulty to deal with open terms comes from the fact that the structure of metaterms is only partially known, so that some reduction rules became blocked by the metavariables. In this work, we establish metaconfluence for a family of calculi with explicit substitutions (ES) that enjoy preservation of strong-normalization (PSN) and that act at a distance. For that, we first extend the notion of reduction on metaterms in such a way that explicit substitutions are never structurally moved, i.e. they also act at a distance on metaterms. The resulting reduction relations are still rewriting systems, i.e. they do not include equational axioms, thus providing for the first time an interesting family of lambda-calculi with explicit substitutions that enjoy both PSN and metaconfluence without requiring sophisticated notions of reduction modulo a set of equations

    Normalization by Evaluation in the Delay Monad: A Case Study for Coinduction via Copatterns and Sized Types

    Get PDF
    In this paper, we present an Agda formalization of a normalizer for simply-typed lambda terms. The normalizer consists of two coinductively defined functions in the delay monad: One is a standard evaluator of lambda terms to closures, the other a type-directed reifier from values to eta-long beta-normal forms. Their composition, normalization-by-evaluation, is shown to be a total function a posteriori, using a standard logical-relations argument. The successful formalization serves as a proof-of-concept for coinductive programming and reasoning using sized types and copatterns, a new and presently experimental feature of Agda.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    Explicit substitution : on the edge of strong normalisation

    Get PDF

    POPLMark reloaded: Mechanizing proofs by logical relations

    Get PDF
    We propose a new collection of benchmark problems in mechanizing the metatheory of programming languages, in order to compare and push the state of the art of proof assistants. In particular, we focus on proofs using logical relations (LRs) and propose establishing strong normalization of a simply typed calculus with a proof by Kripke-style LRs as a benchmark. We give a modern view of this well-understood problem by formulating our LR on well-typed terms. Using this case study, we share some of the lessons learned tackling this problem in different dependently typed proof environments. In particular, we consider the mechanization in Beluga, a proof environment that supports higher-order abstract syntax encodings and contrast it to the development and strategies used in general-purpose proof assistants such as Coq and Agda. The goal of this paper is to engage the community in discussions on what support in proof environments is needed to truly bring mechanized metatheory to the masses and engage said community in the crafting of future benchmarks
    corecore