857 research outputs found

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Adjustable Robust Reinforcement Learning for Online 3D Bin Packing

    Full text link
    Designing effective policies for the online 3D bin packing problem (3D-BPP) has been a long-standing challenge, primarily due to the unpredictable nature of incoming box sequences and stringent physical constraints. While current deep reinforcement learning (DRL) methods for online 3D-BPP have shown promising results in optimizing average performance over an underlying box sequence distribution, they often fail in real-world settings where some worst-case scenarios can materialize. Standard robust DRL algorithms tend to overly prioritize optimizing the worst-case performance at the expense of performance under normal problem instance distribution. To address these issues, we first introduce a permutation-based attacker to investigate the practical robustness of both DRL-based and heuristic methods proposed for solving online 3D-BPP. Then, we propose an adjustable robust reinforcement learning (AR2L) framework that allows efficient adjustment of robustness weights to achieve the desired balance of the policy's performance in average and worst-case environments. Specifically, we formulate the objective function as a weighted sum of expected and worst-case returns, and derive the lower performance bound by relating to the return under a mixture dynamics. To realize this lower bound, we adopt an iterative procedure that searches for the associated mixture dynamics and improves the corresponding policy. We integrate this procedure into two popular robust adversarial algorithms to develop the exact and approximate AR2L algorithms. Experiments demonstrate that AR2L is versatile in the sense that it improves policy robustness while maintaining an acceptable level of performance for the nominal case.Comment: Accepted to NeurIPS202

    Scheduling Storms and Streams in the Cloud

    Full text link
    Motivated by emerging big streaming data processing paradigms (e.g., Twitter Storm, Streaming MapReduce), we investigate the problem of scheduling graphs over a large cluster of servers. Each graph is a job, where nodes represent compute tasks and edges indicate data-flows between these compute tasks. Jobs (graphs) arrive randomly over time, and upon completion, leave the system. When a job arrives, the scheduler needs to partition the graph and distribute it over the servers to satisfy load balancing and cost considerations. Specifically, neighboring compute tasks in the graph that are mapped to different servers incur load on the network; thus a mapping of the jobs among the servers incurs a cost that is proportional to the number of "broken edges". We propose a low complexity randomized scheduling algorithm that, without service preemptions, stabilizes the system with graph arrivals/departures; more importantly, it allows a smooth trade-off between minimizing average partitioning cost and average queue lengths. Interestingly, to avoid service preemptions, our approach does not rely on a Gibbs sampler; instead, we show that the corresponding limiting invariant measure has an interpretation stemming from a loss system.Comment: 14 page

    A machine learning optimization approach for last-mile delivery and third-party logistics

    Get PDF
    Third-party logistics is now an essential component of efficient delivery systems, enabling companies to purchase carrier services instead of an expensive fleet of vehicles. However, carrier contracts have to be booked in advance without exact knowledge of what orders will be available for dispatch. The model describing this problem is the variable cost and size bin packing problem with stochastic items. Since it cannot be solved for realistic instances by means of exact solvers, in this paper, we present a new heuristic algorithm able to do so based on machine learning techniques. Several numerical experiments show that the proposed heuristics achieve good performance in a short computational time, thus enabling its real-world usage. Moreover, the comparison against a new and efficient version of progressive hedging proves that the proposed heuristic achieves better results. Finally, we present managerial insights for a case study on parcel delivery in Turin, Italy
    • …
    corecore