81 research outputs found

    The State of the Art in Flow Visualization: Dense and Texture-Based Techniques

    Get PDF
    Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods. Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualizatio

    Image Space Advection on graphics hardware

    Get PDF
    www.icg.tu-graz.ac.at The scientific visualization and computer graphics communities have witnessed a tremendous rise in graphics processing unit (GPU) related literature and methodology recently. This is due in part to the rapidly increasing processing speed offered by graphics cards. Parallel to this, we have seen several advances made in the area of texture-based flow visualization. We present a texture-based flow visualization technique, Image Space Advection (ISA), that takes advantage of the computing power offered by recent, state-of-theart GPUs. We have implemented a completely GPU-based version of the ISA algorithm. Here we describe our implementation in detail, including both the advantages and disadvantages of implementing ISA on the GPU. The result is state-of-the-art technique that demonstrates the latest in terms of both flow visualization methodology and GPU programming

    Image space based visualization of unsteady flow on surfaces

    Get PDF

    Applications of Texture-Based Flow Visualization

    Get PDF

    GPUFLIC: interactive and accurate dense visualization of unsteady flows

    Get PDF
    Journal ArticleAbstract The paper presents an efficient and accurate implementation of Unsteady Flow LIC (UFLIC) on the Graphics Processing Unit (GPU). We obtain the same, high quality texture representation of unsteady two-dimensional flows as the original, time-consuming method but leverage the features of today's commodity hardware to achieve interactive frame rates. Despite a remarkable number of recent contributions in the field of texture-based visualization of time-dependent vector fields, the present paper is the first to provide a faithful implementation of that prominent technique fully supported by the graphics pipeline

    Multiscale Image Based Flow Visualization

    Get PDF
    We present MIBFV, a method to produce real-time, multiscale animations of flow datasets. MIBFV extends the attractive features of the Image-Based Flow Visualization (IBFV) method, i.e. dense flow domain coverage with flow-aligned noise, real-time animation, implementation simplicity, and few (or no) user input requirements, to a multiscale dimension. We generate a multiscale of flow-aligned patterns using an algebraic multigrid method and use them to synthesize the noise textures required by IBFV. We demonstrate our approach with animations that combine multiple scale noise layers, in a global or level-of-detail manner

    Multiscale Image Based Flow Visualization

    Get PDF

    Multiscale Image Based Flow Visualization

    Get PDF

    Multiscale Image Based Flow Visualization

    Get PDF
    • …
    corecore