586 research outputs found

    A Temporal Dependency Model for Rate-Distortion Optimization in Video Coding

    Get PDF
    Many video codecs use motion compensated prediction to achieve compression efficiency. Motion compensated prediction may produce temporal dependency across frames. For example, quantization distortion in a block may propagate through motion compensated prediction and affect the coding efficiency of blocks in subsequent frames. Identifying temporal dependencies may improve the rate-distortion optimization and produce coding performance gains. Block-based motion trajectories and correlations between source pixel blocks along a motion trajectory may be used estimate a distortion propagation model, which may represent the correlation between the distortion propagation and the effect of quantization. A temporal dependency model that accounts for both block correlation and the quantization effect may provide compression gains over the use of a distortion propagation model

    Rate-distortion and complexity optimized motion estimation for H.264 video coding

    Get PDF
    11.264 video coding standard supports several inter-prediction coding modes that use macroblock (MB) partitions with variable block sizes. Rate-distortion (R-D) optimal selection of both the motion vectors (MVs) and the coding mode of each MB is essential for an H.264 encoder to achieve superior coding efficiency. Unfortunately, searching for optimal MVs of each possible subblock incurs a heavy computational cost. In this paper, in order to reduce the computational burden of integer-pel motion estimation (ME) without sacrificing from the coding performance, we propose a R-D and complexity joint optimization framework. Within this framework, we develop a simple method that determines for each MB which partitions are likely to be optimal. MV search is carried out for only the selected partitions, thus reducing the complexity of the ME step. The mode selection criteria is based on a measure of spatiotemporal activity within the MB. The procedure minimizes the coding loss at a given level of computational complexity either for the full video sequence or for each single frame. For the latter case, the algorithm provides a tight upper bound on the worst case complexity/execution time of the ME module. Simulation results show that the algorithm speeds up integer-pel ME by a factor of up to 40 with less than 0.2 dB loss in coding efficiency.Publisher's Versio

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Rate Control in Video Coding

    Get PDF

    Contributions to the solution of the rate-distorsion optimization problem in video coding

    Get PDF
    In the last two decades, we have witnessed significant changes concerning the demand of video codecs. The diversity of services has significantly increased, high definition (HD) and beyond-HD resolutions have become a reality, the video traffic coming from mobile devices and tablets is increasing, the video-on-demand services are now playing a prominent role, and so on. All of these advances have converged to demand more powerful standard video codecs, the more recent ones being the H.264/Advanced Video Coding (H.264/AVC) and the latest High Efficiency Video Coding (HEVC), both generated by the Joint Collaborative Team on Video Coding (JCT-VC), a partnership of the ITU-T Video Coding Expert Group (VCEG) and the ISO/IED Moving Picture Expert Group (MEPG). These two standards (and many others starting with the ITU-T H.261) rely on a hybrid model known as Differential Pulse Code Modulation (DPCM)/Discrete Cosine Transform (DCT) hybrid video coder, which involves a motion estimation and compensation phase followed by a transformation and quantization stages and an entropy coder. Moreover, each of these main subsystems is made of a number of interdependent and parametric modules that can be adapted to the particular video content. The main problem arising from this approach is how to choose as best as possible the combination of the different parametrizations to achieve the most efficient coding of the current content. To solve this problem, one of the solutions proposed (and the one adopted in both the H.264/AVC and the HEVC reference encoder implementations) is the process referred to as rate-distortion optimization, which chooses a parametrization of the encoder based on the minimization of a cost function that considers the trade-off between rate and distortion, weighted by a Lagrange multiplier (��) which has been empirically obtained for both the H.264/AVC and the HEVC reference encoder implementations, aiming to provide a robust solution for a variety of video contents. In this PhD. thesis, an exhaustive study of the influence of this Lagrangian parameter on different video sequences reveals that there are some common features that appear frequently in video sequences for which the adopted �� model (the reference model) becomes ineffective. Furthermore, we have found a notable margin of improvement in the coding efficiency of both coders when using a more adequate model for the Lagrangian parameter. Thus, contributions of this thesis are the following: (i) to prove that the reference Lagrangian model becomes ineffective in certain common situations; and (ii), propose generalized solutions to improve the robustness of the reference model, both for the H.264/AVC and the HEVC standards, obtaining important improvements in the coding efficiency. In both proposals, changes in the nature over the video sequence are taken into account, proposing models that adaptively consider the video content and minimize the increment in computational complexity.En las últimas dos décadas hemos sido testigos de importantes cambios en la demanda de codificadores de vídeo debido a múltiples factores: la diversidad de servicios se ha visto incrementada significativamente, la resolución high definition (HD) (e incluso mayores) se ha hecho realidad, el tráfico de vídeo procedente de dispositivos móviles y tabletas está aumentando y los servicios de vídeo bajo demanda son cada vez más comunes, entre otros muchos ejemplos. Todos estos avances convergen en la demanda de estándares de codificación de vídeo más potentes, siendo los más importantes el H.264/Advanced Video Coding (AVC) y el más reciente High Efficiency Video Coding (HEVC), ambos definidos por el Joint Collaborative Team on Video Coding (JCT-VC), una colaboraci´on entre el ITU-T Video Coding Expert Group (VCEG) y el ISO/IED Moving Picture Expert Group (MPEG). Estos dos estándares (y otros muchos, empezando con el ITU-T H.261) se basan en un modelo híbrido de codificador conocido como Differential Pulse Code Modulation (DPCM)/Discrete Cosine Transform (DCT), que está formado por una estimación y compensación de movimiento seguida de una etapa de transformación y cuantificación y un codificador entrópico. Además, cada uno de estos subsistemas está formado por un cierto número de módulos interdependientes y paramétricos que pueden adaptarse al contenido específico de cada secuencia de vídeo. El principal problema que surge de esta aproximación es cómo elegir de la forma más adecuada la combinación de las distintas parametrizaciones con el objetivo de alcanzar la codificación más eficiente posible del contenido que se está procesando. Para resolver este problema, una de las soluciones propuestas es el proceso conocido como optimización tasa-distorsión, que se encarga de elegir una parametrización para el codificador basada en la minimización de una función de coste que considera el compromiso existente entre la tasa y la distorsión, ponderado por un multiplicador de Lagrange (�) que ha sido obtenido de forma empírica para las implementaciones de referencia del codificador tanto del estándar H.264/AVC como del estándar HEVC, con el objetivo de proponer una solución robusta para distintos tipos de contenidos de vídeo. En esta tesis doctoral, un estudio exhaustivo de la influencia de este parámetro lagrangiano en distintas secuencias de vídeo revela que existen algunas características comunes que aparecen frecuentemente en secuencias de vídeo para las que el modelo � adoptado en las implementaciones de referencia resulta poco efectivo. Además, hemos encontrado un notable margen de mejora en la eficiencia de codificación de ambos codificadores usando un modelo más adecuado para este parámetro lagrangiano. Por consiguiente, las contribuciones de esta tesis son las que siguen: (i) probar que el modelo lagrangiano de referencia resulta inefectivo bajo ciertas situaciones comunes; y (ii), proponer soluciones generalizadas para mejorar la robustez del modelo de referencia, tanto en el caso de H.264/AVC como en el de HEVC, obteniendo mejoras importantes en eficiencia de codificación. En ambas propuestas se tienen en cuenta los cambios en la naturaleza del contenido de una secuencia de vídeo proponiendo modelos que se adaptan dinámicamente a dicho contenido variable y que tienen en cuenta el incremento en la complejidad computacional del codificador.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: José Prades Nebot.- Secretario: Carmen Peláez Moreno.- Vocal: Julián Cabrera Quesad

    Performance Analysis of SVC

    Full text link

    Online Reinforcement Learning for Dynamic Multimedia Systems

    Full text link
    In our previous work, we proposed a systematic cross-layer framework for dynamic multimedia systems, which allows each layer to make autonomous and foresighted decisions that maximize the system's long-term performance, while meeting the application's real-time delay constraints. The proposed solution solved the cross-layer optimization offline, under the assumption that the multimedia system's probabilistic dynamics were known a priori. In practice, however, these dynamics are unknown a priori and therefore must be learned online. In this paper, we address this problem by allowing the multimedia system layers to learn, through repeated interactions with each other, to autonomously optimize the system's long-term performance at run-time. We propose two reinforcement learning algorithms for optimizing the system under different design constraints: the first algorithm solves the cross-layer optimization in a centralized manner, and the second solves it in a decentralized manner. We analyze both algorithms in terms of their required computation, memory, and inter-layer communication overheads. After noting that the proposed reinforcement learning algorithms learn too slowly, we introduce a complementary accelerated learning algorithm that exploits partial knowledge about the system's dynamics in order to dramatically improve the system's performance. In our experiments, we demonstrate that decentralized learning can perform as well as centralized learning, while enabling the layers to act autonomously. Additionally, we show that existing application-independent reinforcement learning algorithms, and existing myopic learning algorithms deployed in multimedia systems, perform significantly worse than our proposed application-aware and foresighted learning methods.Comment: 35 pages, 11 figures, 10 table
    corecore