507 research outputs found

    Uncertainty damping in kinetic traffic models by driver-assist controls

    Get PDF
    In this paper, we propose a kinetic model of traffic flow with uncertain binary interactions, which explains the scattering of the fundamental diagram in terms of the macroscopic variability of aggregate quantities, such as the mean speed and the flux of the vehicles, produced by the microscopic uncertainty. Moreover, we design control strategies at the level of the microscopic interactions among the vehicles, by which we prove that it is possible to dampen the propagation of such an uncertainty across the scales. Our analytical and numerical results suggest that the aggregate traffic flow may be made more ordered, hence predictable, by implementing such control protocols in driver-assist vehicles. Remarkably, they also provide a precise relationship between a measure of the macroscopic damping of the uncertainty and the penetration rate of the driver-assist technology in the traffic stream

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    An Investigation into the Frequency Stability of Non-oven Controlled Crystal Oscillators

    Get PDF
    Temperature induced frequency deviation of quartz crystal oscillators can be reduced by tuning the oscillator to compensate for the thermal effects. A varactor tuned AT cut resonator is typically used to make a voltage controlled crystal oscillator. Compensation is then achieved by applying a "compensation voltage" to the varactor. The earliest compensation circuits comprised resistors and thermistors. Over the temperature range -40° C to +85°C resistive compensation circuits have achieved frequency stabilities of approximately + Ippm. Alternative analogue circuits have achieved frequency stability of < +0.5ppm. The research described in this thesis is an investigation of resistive networks in order to improve the levels of stability that can be achieved by this method of temperature compensation for crystal oscillators. The objective was to achieve a stability of < +0.5ppm over the temperature range -40°C to +85°C. Optimisation techniques have been employed to identify a new temperature compensation circuit. This new circuit uses an amplifier with temperature sensitive gain to modify thermistor characteristics and improve the compensation over the high part of the temperature range. Two forms of this circuit are presented. Computer simulation of this circuit has shown that it is capable of achieving frequency stability of < ±0.3ppm in an oscillator operating from a 4.5 V supply over the temperature range -40°C to +85°C

    Lagrange Stabilization of Pendulum-like Systems: A Pseudo H-infinity Control Approach

    Full text link
    This paper studies the Lagrange stabilization of a class of nonlinear systems whose linear part has a singular system matrix and which have multiple periodic (in state) nonlinearities. Both state and output feedback Lagrange stabilization problems are considered. The paper develops a pseudo H-infinity control theory to solve these stabilization problems. In a similar fashion to the Strict Bounded Real Lemma in classic H-infinity control theory, a Pseudo Strict Bounded Real Lemma is established for systems with a single unstable pole. Sufficient conditions for the synthesis of state feedback and output feedback controllers are given to ensure that the closed-loop system is pseudo strict bounded real. The pseudo H-infinity control approach is applied to solve state feedback and output feedback Lagrange stabilization problems for nonlinear systems with multiple nonlinearities. An example is given to illustrate the proposed method

    Control Theory: A Mathematical Perspective on Cyber-Physical Systems

    Get PDF
    Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Recently the control field is facing new challenges motivated by application domains that involve networks of systems. Examples are interacting robots, networks of autonomous cars or the smart grid. In order to address the new challenges posed by these application disciplines, the special focus of this workshop has been on the currently very active field of Cyber-Physical Systems, which forms the underlying basis for many network control applications. A series of lectures in this workshop was devoted to give an overview on current theoretical developments in Cyber-Physical Systems, emphasizing in particular the mathematical aspects of the field. Special focus was on the dynamics and control of networks of systems, distributed optimization and formation control, fundamentals of nonlinear interconnected systems, as well as open problems in control
    corecore