28,769 research outputs found

    An fMRI study of parietal cortex involvement in the visual guidance of locomotion

    Get PDF
    Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved

    On proximity and hierarchy : exploring and modelling space using multilevel modelling and spatial econometrics

    Get PDF
    Spatial econometrics and also multilevel modelling techniques are increasingly part of the regional scientists‟ toolbox. Both approaches are used to model spatial autocorrelation in a wide variety of applications. However, it is not always clear on which basis researchers make a choice between spatial econometrics and spatial multilevel modelling. Therefore it is useful to compare both techniques. Spatial econometrics incorporates neighbouring areas into the model design; and thus interprets spatial proximity as defined in Tobler‟s first law of geography. On the other hand, multilevel modelling using geographical units takes a more hierarchical approach. In this case the first law of geography can be rephrased as „everything is related to everything else, but things in the same region are more related than things in different regions‟. The hierarchy (multilevel) and the proximity (spatial econometrics) approach are illustrated using Belgian mobility data and productivity data of European regions. One of the advantages of a multilevel model is that it can incorporate more than two levels (spatial scales). Another advantage is that a multilevel structure can easily reflect an administrative structure with different government levels. Spatial econometrics on the other hand works with a unique set of neighbours which has the advantage that there still is a relation between neighbouring municipalities separated by a regional boundary. The concept of distance can also more easily be incorporated in a spatial econometrics setting. Both spatial econometrics and spatial multilevel modelling proved to be valuable techniques in spatial research but more attention should go to the rationale why one of the two approaches is chosen. We conclude with some comments on models which make a combination of both techniques

    Dismantling the Mantel tests

    Get PDF
    The simple and partial Mantel tests are routinely used in many areas of evolutionary biology to assess the significance of the association between two or more matrices of distances relative to the same pairs of individuals or demes. Partial Mantel tests rather than simple Mantel tests are widely used to assess the relationship between two variables displaying some form of structure. We show that contrarily to a widely shared belief, partial Mantel tests are not valid in this case, and their bias remains close to that of the simple Mantel test. We confirm that strong biases are expected under a sampling design and spatial correlation parameter drawn from an actual study. The Mantel tests should not be used in case auto-correlation is suspected in both variables compared under the null hypothesis. We outline alternative strategies. The R code used for our computer simulations is distributed as supporting material

    Convergence across Russian regions: a spatial econometrics approach

    Get PDF
    This paper analyses the process of convergence across the regions of Russia using spatial econometrics tools in addition to the traditional ÎČ-convergence techniques as derived from the neoclassical theoretical setting. The spatial component appears to be non-negligible and, consequently, conventional convergence estimates suffer a bias due to spatial dependence across observations. Furthermore, variables such as hydrocarbon supply, openness to trade and FDI per capita are found to have an unambiguous, positive and statistically significant impact on growth (Results are also confirmed by the panel counterpart of the model. Estimates for this last are presented in the Appendix E)

    Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach

    Get PDF
    Local meteorological conditions and biospheric activity are tightly coupled. Understanding these links is an essential prerequisite for predicting the Earth system under climate change conditions. However, many empirical studies on the interaction between the biosphere and the atmosphere are based on correlative approaches that are not able to deduce causal paths, and only very few studies apply causal discovery methods. Here, we use a recently proposed causal graph discovery algorithm, which aims to reconstruct the causal dependency structure underlying a set of time series. We explore the potential of this method to infer temporal dependencies in biosphere-atmosphere interactions. Specifically we address the following questions: How do periodicity and heteroscedasticity influence causal detection rates, i.e. the detection of existing and non-existing links? How consistent are results for noise-contaminated data? Do results exhibit an increased information content that justifies the use of this causal-inference method? We explore the first question using artificial time series with well known dependencies that mimic real-world biosphere-atmosphere interactions. The two remaining questions are addressed jointly in two case studies utilizing observational data. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosystem at half hourly time resolution allowing us to understand the impact of measurement uncertainties. Secondly, we analyse global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic drivers of vegetation greenness. Overall, the results confirm the capacity of the causal discovery method to extract time-lagged linear dependencies under realistic settings. The violation of the method's assumptions increases the likelihood to detect false links. Nevertheless, we consistently identify interaction patterns in observational data. Our findings suggest that estimating a directed biosphere-atmosphere network at the ecosystem level can offer novel possibilities to unravel complex multi-directional interactions. Other than classical correlative approaches, our findings are constrained to a few meaningful set of relations which can be powerful insights for the evaluation of terrestrial ecosystem models

    Causal networks for climate model evaluation and constrained projections

    Get PDF
    Global climate models are central tools for understanding past and future climate change. The assessment of model skill, in turn, can benefit from modern data science approaches. Here we apply causal discovery algorithms to sea level pressure data from a large set of climate model simulations and, as a proxy for observations, meteorological reanalyses. We demonstrate how the resulting causal networks (fingerprints) offer an objective pathway for process-oriented model evaluation. Models with fingerprints closer to observations better reproduce important precipitation patterns over highly populated areas such as the Indian subcontinent, Africa, East Asia, Europe and North America. We further identify expected model interdependencies due to shared development backgrounds. Finally, our network metrics provide stronger relationships for constraining precipitation projections under climate change as compared to traditional evaluation metrics for storm tracks or precipitation itself. Such emergent relationships highlight the potential of causal networks to constrain longstanding uncertainties in climate change projections. Algorithms to assess causal relationships in data sets have seen increasing applications in climate science in recent years. Here, the authors show that these techniques can help to systematically evaluate the performance of climate models and, as a result, to constrain uncertainties in future climate change projections

    Sampling soil organic carbon to detect change over time

    Get PDF
    This research describes a generic monitoring design that could be widely applied to detect temporal changes in soil organic carbon stocks (SOC) across a carbon estimation area (CEA) with no prior knowledge of the spatial or temporal variance of SOC within the CEA. The report includes information on: Bases for designing SOC stock sampling for detecting change Monitoring SOC change to verify the effects of land use or management practicesStatistical rationale for monitoring SOC changeQuality measure and constraints for monitoring SOC changeDesign-based optimisation of sample sizesModel-based optimisation of sample sizesHypothesis testingStatistical model for monitoring SOC changeUsing available data and its variability to guide initial sampling designUncertainty in outcomes of monitoring designsSummary and conclusions
    • 

    corecore