350 research outputs found

    Hoop-Passing Motion for a Snake Robot to Realize Motion Transition Across Different Environments

    Get PDF
    A snake robot performs diverse motions. To realize a wide range functions in a complex environment, it is necessary to transition between various motions suited to each environment. In this article, we propose a method of transitioning the motion of a snake robot across different environments to expand the application environment of the robot. We first find that the motion at the connection point between two motions must coincide with the tangential movement during motion transition across different environments. We then design a gait called the circular pedal wave. This circular pedal wave allows a hoop-passing motion in which the whole body moves as if it is passing through a virtual hoop fixed in space in sequence from its head through combination with a proposed shift part. The hoop-passing motion allows motion transition across different environments. We propose three application examples of this hoop-passing motion, namely passing through a hole in a wall, entering an underfloor, and attaching to a ladder. We report on experiments conducted to verify the effectiveness of the proposed method and to realize the described motions

    Design and Construction of a Tree-climbing Robot

    Get PDF
    This report describes the research, mechanical analysis, design methodology, and testing procedures that were used to design and build a tree-climbing robot. The goal of this project was to build a tree-climbing robot to satisfy the requirements established by the USDA and aid in the detection of Asian Longhorn Beetles. The following report details the threat that invasive beetle species pose to the United States, how tree climbing robots may help eliminate invasive species, a review of robots that have successfully climbed trees, and how effective they may be at locating beetles, our considerations when developing a tree climbing robot design, the preliminary robot design, the final robot design, mechanical analysis, programming structure, and the results that were achieved by the robot

    Addressing Tasks Through Robot Adaptation

    Get PDF
    Developing flexible, broadly capable systems is essential for robots to move out of factories and into our daily lives, functioning as responsive agents that can handle whatever the world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments by transforming themselves. By rearranging the connective structure of their component robot modules, these systems can assume different morphologies: for example, a cluster of modules might configure themselves into a car to maneuver on flat ground, a snake to climb stairs, or an arm to pick and place objects. Conversely, environment augmentation is a strategy in which the robot transforms its environment to meet its own needs, adding physical structures that allow it to overcome obstacles. In both areas, the presented work includes elements of hardware design, algorithms, and integrated systems, with the common goal of establishing these methods of adaptation as viable strategies to address tasks. The research takes a systems-level view of robotics, placing particular emphasis on experimental validation in hardware

    Development and field test of the articulated mobile robot T2 Snake-4 for plant disaster prevention

    Get PDF
    In this work, we develop an articulated mobile robot that can move in narrow spaces, climb stairs, gather information, and operate valves for plant disaster prevention. The robot can adopt a tall position using a folding arm and gather information using sensors mounted on the arm. In addition, this paper presents a stair climbing method using a single backward wave. This method enables the robot to climb stairs that have a short tread. The developed robot system is tested in a field test at the World Robot Summit 2018, and the lessons learned in the field test are discussed

    Supplement to Lauri Lahti’s conference article "Educational framework for adoption of vocabulary based on Wikipedia linkage and spaced learning"

    Get PDF
    A supplement to Lauri Lahti’s conference article in 2012 "Educational framework for adoption of vocabulary based on Wikipedia linkage and spaced learning" so that this supplement was referenced to by the original publication.Not reviewe

    Control of an articulated wheeled mobile robot in pipes

    Get PDF
    We propose a control method in which an articulated wheeled mobile robot moves inside straight, curved and branched pipes. This control method allows the articulated wheeled mobile robot to inspect a larger area. The articulated wheeled mobile robot comprises pitch and yaw joints is and propelled by active wheels attached to the robot. Via the proposed control method, the robot takes on two different shapes; one prevents the robot from slipping inside straight pipes and the other allows movement in a pipe that curves in any direction. The robot is controlled by a simplified model for the robot\u27s joint angles. The joint angles of the robot are obtained by fitting to a continuous curve along the pipe path. In addition, the angular velocity of the robot\u27s active wheels is determined by a simplified model. The effectiveness of the proposed the control method was demonstrated with a physical implementation of the robot, and the robot was able to move inside straight, curved and branched pipes
    corecore