912 research outputs found

    Minimal classes of graphs of unbounded clique-width defined by finitely many forbidden induced subgraphs

    Full text link
    We discover new hereditary classes of graphs that are minimal (with respect to set inclusion) of unbounded clique-width. The new examples include split permutation graphs and bichain graphs. Each of these classes is characterised by a finite list of minimal forbidden induced subgraphs. These, therefore, disprove a conjecture due to Daligault, Rao and Thomasse from 2010 claiming that all such minimal classes must be defined by infinitely many forbidden induced subgraphs. In the same paper, Daligault, Rao and Thomasse make another conjecture that every hereditary class of unbounded clique-width must contain a labelled infinite antichain. We show that the two example classes we consider here satisfy this conjecture. Indeed, they each contain a canonical labelled infinite antichain, which leads us to propose a stronger conjecture: that every hereditary class of graphs that is minimal of unbounded clique-width contains a canonical labelled infinite antichain.Comment: 17 pages, 7 figure

    Letter graphs and geometric grid classes of permutations: characterization and recognition

    Full text link
    In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and kk-letter graphs for a fixed kk. However, constructive algorithms are available only for k=2k=2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 33-letter graphs. It is based on a structural characterization of graphs in this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author

    Shrub-depth: Capturing Height of Dense Graphs

    Full text link
    The recent increase of interest in the graph invariant called tree-depth and in its applications in algorithms and logic on graphs led to a natural question: is there an analogously useful "depth" notion also for dense graphs (say; one which is stable under graph complementation)? To this end, in a 2012 conference paper, a new notion of shrub-depth has been introduced, such that it is related to the established notion of clique-width in a similar way as tree-depth is related to tree-width. Since then shrub-depth has been successfully used in several research papers. Here we provide an in-depth review of the definition and basic properties of shrub-depth, and we focus on its logical aspects which turned out to be most useful. In particular, we use shrub-depth to give a characterization of the lower ω{\omega} levels of the MSO1 transduction hierarchy of simple graphs

    Induced minors and well-quasi-ordering

    Get PDF
    A graph HH is an induced minor of a graph GG if it can be obtained from an induced subgraph of GG by contracting edges. Otherwise, GG is said to be HH-induced minor-free. Robin Thomas showed that K4K_4-induced minor-free graphs are well-quasi-ordered by induced minors [Graphs without K4K_4 and well-quasi-ordering, Journal of Combinatorial Theory, Series B, 38(3):240 -- 247, 1985]. We provide a dichotomy theorem for HH-induced minor-free graphs and show that the class of HH-induced minor-free graphs is well-quasi-ordered by the induced minor relation if and only if HH is an induced minor of the gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we proved two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding in [Subgraphs and well-quasi-ordering, Journal of Graph Theory, 16(5):489--502, 1992] and for induced subgraphs by Peter Damaschke in [Induced subgraphs and well-quasi-ordering, Journal of Graph Theory, 14(4):427--435, 1990]

    Well-quasi-ordering versus clique-width : new results on bigenic classes.

    Get PDF
    Daligault, Rao and Thomassé conjectured that if a hereditary class of graphs is well-quasi-ordered by the induced subgraph relation then it has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this conjecture is not true for infinitely defined classes. For finitely defined classes the conjecture is still open. It is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of P4P4. For bigenic classes of graphs i.e. ones defined by two forbidden induced subgraphs there are several open cases in both classifications. We reduce the number of open cases for well-quasi-orderability of such classes from 12 to 9. Our results agree with the conjecture and imply that there are only two remaining cases to verify for bigenic classes

    A Counterexample Regarding Labelled Well-Quasi-Ordering

    Get PDF
    Korpelainen, Lozin, and Razgon conjectured that a hereditary property of graphs which is well-quasi-ordered by the induced subgraph order and defined by only finitely many minimal forbidden induced subgraphs is labelled well-quasi-ordered, a notion stronger than that of n-well-quasi-order introduced by Pouzet in the 1970s. We present a counterexample to this conjecture. In fact, we exhibit a hereditary property of graphs which is well-quasi-ordered by the induced subgraph order and defined by finitely many minimal forbidden induced subgraphs yet is not 2-well-quasi-ordered. This counterexample is based on the widdershins spiral, which has received some study in the area of permutation patterns

    Well-quasi-ordering versus clique-width: new results on bigenic classes

    Get PDF
    Daligault, Rao and Thomassé conjectured that if a hereditary class of graphs is well-quasi-ordered by the induced subgraph relation then it has bounded clique-width. Lozin, Razgon and Zamaraev recently showed that this conjecture is not true for infinitely defined classes. For finitely defined classes the conjecture is still open. It is known to hold for classes of graphs defined by a single forbidden induced subgraph H, as such graphs are well-quasi-ordered and are of bounded clique-width if and only if H is an induced subgraph of P4P4. For bigenic classes of graphs i.e. ones defined by two forbidden induced subgraphs there are several open cases in both classifications. We reduce the number of open cases for well-quasi-orderability of such classes from 12 to 9. Our results agree with the conjecture and imply that there are only two remaining cases to verify for bigenic classes
    • …
    corecore