1,725 research outputs found

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    Dual-wavelength thulium fluoride fiber laser based on SMF-TMSIF-SMF interferometer as potential source for microwave generationin 100-GHz region

    Get PDF
    A dual-wavelength thulium-doped fluoride fiber (TDFF) laser is presented. The generation of the TDFF laser is achieved with the incorporation of a single modemultimode- single mode (SMS) interferometer in the laser cavity. The simple SMS interferometer is fabricated using the combination of two-mode step index fiber and single-mode fiber. With this proposed design, as many as eight stable laser lines are experimentally demonstrated. Moreover, when a tunable bandpass filter is inserted in the laser cavity, a dual-wavelength TDFF laser can be achieved in a 1.5-μm region. By heterodyning the dual-wavelength laser, simulation results suggest that the generated microwave signals can be tuned from 105.678 to 106.524 GHz with a constant step of �0.14 GHz. The presented photonics-based microwave generation method could provide alternative solution for 5G signal sources in 100-GHz region

    Accurate 3D Cell Segmentation using Deep Feature and CRF Refinement

    Full text link
    We consider the problem of accurately identifying cell boundaries and labeling individual cells in confocal microscopy images, specifically, 3D image stacks of cells with tagged cell membranes. Precise identification of cell boundaries, their shapes, and quantifying inter-cellular space leads to a better understanding of cell morphogenesis. Towards this, we outline a cell segmentation method that uses a deep neural network architecture to extract a confidence map of cell boundaries, followed by a 3D watershed algorithm and a final refinement using a conditional random field. In addition to improving the accuracy of segmentation compared to other state-of-the-art methods, the proposed approach also generalizes well to different datasets without the need to retrain the network for each dataset. Detailed experimental results are provided, and the source code is available on GitHub.Comment: 5 pages, 5 figures, 3 table

    An Efficient Image Segmentation Approach through Enhanced Watershed Algorithm

    Get PDF
    Image segmentation is a significant task for image analysis which is at the middle layer of image engineering. The purpose of segmentation is to decompose the image into parts that are meaningful with respect to a particular application. The proposed system is to boost the morphological watershed method for degraded images. Proposed algorithm is based on merging morphological watershed result with enhanced edge detection result obtain on pre processing of degraded images. As a post processing step, to each of the segmented regions obtained, color histogram algorithm is applied, enhancing the overall performance of the watershed algorithm. Keywords – Segmentation, watershed, color histogra

    Improved techniques for automatic image segmentation

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Size and Shape Determination of Riprap and Large-sized Aggregates Using Field Imaging

    Get PDF
    Riprap rock and large-sized aggregates are extensively used in transportation, geotechnical, and hydraulic engineering applications. Traditional methods for assessing riprap categories based on particle weight may involve subjective visual inspection and time-consuming manual measurements. Aggregate imaging and segmentation techniques can efficiently characterize riprap particles for their size and morphological/shape properties to estimate particle weights. Particle size and morphological/shape characterization ensure the reliable and sustainable use of all aggregate skeleton materials at quarry production lines and construction sites. Aggregate imaging systems developed to date for size and shape characterization, however, have primarily focused on measurement of separated or non-overlapping aggregate particles. This research study presents an innovative approach for automated segmentation and morphological analyses of stockpile aggregate images based on deep-learning techniques. As a project outcome, a portable, deployable, and affordable field-imaging system is envisioned to estimate volumes of individual riprap rocks for field evaluation. A state-of-the-art object detection and segmentation framework is used to train an image-segmentation kernel from manually labeled 2D riprap images in order to facilitate automatic and user-independent segmentation of stockpile aggregate images. The segmentation results show good agreement with ground-truth validation, which entailed comparing the manual labeling to the automatically segmented images. A significant improvement to the efficiency of size and morphological analyses conducted on densely stacked and overlapping particle images is achieved. The algorithms are integrated into a software application with a user-friendly Graphical User Interface (GUI) for ease of operation. Based on the findings of this study, this stockpile aggregate image analysis program promises to become an efficient and innovative application for field-scale and in-place evaluations of aggregate materials. The innovative imaging-based system is envisioned to provide convenient, reliable, and sustainable solutions for the on-site quality assurance/quality control (QA/QC) tasks related to riprap rock and large-sized aggregate material characterization and classification.IDOT-R27-182Ope
    corecore