4,161 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

    Full text link
    We consider arrangements of axis-aligned rectangles in the plane. A geometric arrangement specifies the coordinates of all rectangles, while a combinatorial arrangement specifies only the respective intersection type in which each pair of rectangles intersects. First, we investigate combinatorial contact arrangements, i.e., arrangements of interior-disjoint rectangles, with a triangle-free intersection graph. We show that such rectangle arrangements are in bijection with the 4-orientations of an underlying planar multigraph and prove that there is a corresponding geometric rectangle contact arrangement. Moreover, we prove that every triangle-free planar graph is the contact graph of such an arrangement. Secondly, we introduce the question whether a given rectangle arrangement has a combinatorially equivalent square arrangement. In addition to some necessary conditions and counterexamples, we show that rectangle arrangements pierced by a horizontal line are squarable under certain sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the International Symposium on Graph Drawing and Network Visualization (GD) 201

    Combinatorial and Geometric Properties of Planar Laman Graphs

    Full text link
    Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two structures are related to Schnyder realizers for maximally planar graphs. We prove that planar Laman graphs are exactly the class of graphs that have an angular structure that is a tree, called angular tree, and that every angular tree has a corresponding angle labeling and edge labeling. Using a combination of these powerful combinatorial structures, we show that every planar Laman graph has an L-contact representation, that is, planar Laman graphs are contact graphs of axis-aligned L-shapes. Moreover, we show that planar Laman graphs and their subgraphs are the only graphs that can be represented this way. We present efficient algorithms that compute, for every planar Laman graph G, an angular tree, angle labeling, edge labeling, and finally an L-contact representation of G. The overall running time is O(n^2), where n is the number of vertices of G, and the L-contact representation is realized on the n x n grid.Comment: 17 pages, 11 figures, SODA 201

    Topological Additive Numbering of Directed Acyclic Graphs

    Full text link
    We propose to study a problem that arises naturally from both Topological Numbering of Directed Acyclic Graphs, and Additive Coloring (also known as Lucky Labeling). Let DD be a digraph and ff a labeling of its vertices with positive integers; denote by S(v)S(v) the sum of labels over all neighbors of each vertex vv. The labeling ff is called \emph{topological additive numbering} if S(u)<S(v)S(u) < S(v) for each arc (u,v)(u,v) of the digraph. The problem asks to find the minimum number kk for which DD has a topological additive numbering with labels belonging to {1,…,k}\{ 1, \ldots, k \}, denoted by ηt(D)\eta_t(D). We characterize when a digraph has topological additive numberings, give a lower bound for ηt(D)\eta_t(D), and provide an integer programming formulation for our problem, characterizing when its coefficient matrix is totally unimodular. We also present some families for which ηt(D)\eta_t(D) can be computed in polynomial time. Finally, we prove that this problem is \np-Hard even when its input is restricted to planar bipartite digraphs
    • …
    corecore