31,276 research outputs found

    A game-theoretic analysis of the ESP game

    Get PDF
    “Games with a Purpose” are interactive games that users play because they are fun, with the added benefit that the outcome of play is useful work. The ESP game, developed by [von Ahn and Dabbish 2004], is an example of such a game devised to label images on the web. Since labeling images is a hard problem for computer vision algorithms and can be tedious and time-consuming for humans, the ESP game provides humans with incentive to do useful work by being enjoyable to play. We present a simple game-theoretic model of the ESP game and characterize the equilibrium behavior in our model. Our equilibrium analysis supports the fact that users appear to coordinate on low effort words. We provide an alternate model of user preferences, modeling a change that could be induced through a different scoring method, and show that equilibrium behavior in this model coordinates on high effort words. We also give sufficient conditions for coordinating on high effort words to be a Bayesian-Nash equilibrium. Our results suggest the possibility of formal incentive design in achieving desirable system-wide outcomes for the purpose of human computation, complementing existing considerations of robustness against cheating and human factors.Engineering and Applied Science

    Playing for Data: Ground Truth from Computer Games

    Full text link
    Recent progress in computer vision has been driven by high-capacity models trained on large datasets. Unfortunately, creating large datasets with pixel-level labels has been extremely costly due to the amount of human effort required. In this paper, we present an approach to rapidly creating pixel-accurate semantic label maps for images extracted from modern computer games. Although the source code and the internal operation of commercial games are inaccessible, we show that associations between image patches can be reconstructed from the communication between the game and the graphics hardware. This enables rapid propagation of semantic labels within and across images synthesized by the game, with no access to the source code or the content. We validate the presented approach by producing dense pixel-level semantic annotations for 25 thousand images synthesized by a photorealistic open-world computer game. Experiments on semantic segmentation datasets show that using the acquired data to supplement real-world images significantly increases accuracy and that the acquired data enables reducing the amount of hand-labeled real-world data: models trained with game data and just 1/3 of the CamVid training set outperform models trained on the complete CamVid training set.Comment: Accepted to the 14th European Conference on Computer Vision (ECCV 2016

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Ancient Coin Classification Using Graph Transduction Games

    Full text link
    Recognizing the type of an ancient coin requires theoretical expertise and years of experience in the field of numismatics. Our goal in this work is automatizing this time consuming and demanding task by a visual classification framework. Specifically, we propose to model ancient coin image classification using Graph Transduction Games (GTG). GTG casts the classification problem as a non-cooperative game where the players (the coin images) decide their strategies (class labels) according to the choices made by the others, which results with a global consensus at the final labeling. Experiments are conducted on the only publicly available dataset which is composed of 180 images of 60 types of Roman coins. We demonstrate that our approach outperforms the literature work on the same dataset with the classification accuracy of 73.6% and 87.3% when there are one and two images per class in the training set, respectively

    A LiDAR Point Cloud Generator: from a Virtual World to Autonomous Driving

    Full text link
    3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate point-level labels from a computer game. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic calibration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed

    A Framework for Exploring and Evaluating Mechanics in Human Computation Games

    Full text link
    Human computation games (HCGs) are a crowdsourcing approach to solving computationally-intractable tasks using games. In this paper, we describe the need for generalizable HCG design knowledge that accommodates the needs of both players and tasks. We propose a formal representation of the mechanics in HCGs, providing a structural breakdown to visualize, compare, and explore the space of HCG mechanics. We present a methodology based on small-scale design experiments using fixed tasks while varying game elements to observe effects on both the player experience and the human computation task completion. Finally we discuss applications of our framework using comparisons of prior HCGs and recent design experiments. Ultimately, we wish to enable easier exploration and development of HCGs, helping these games provide meaningful player experiences while solving difficult problems.Comment: 11 pages, 5 figure
    corecore