577 research outputs found

    Solving Assembly Line Balancing Problems by Combining IP and CP

    Full text link
    Assembly line balancing problems consist in partitioning the work necessary to assemble a number of products among different stations of an assembly line. We present a hybrid approach for solving such problems, which combines constraint programming and integer programming.Comment: 10 pages, Sixth Annual Workshop of the ERCIM Working Group on Constraints, Prague, June 200

    Learning to Select Cuts for Efficient Mixed-Integer Programming

    Get PDF
    Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming (MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely reducing the computational burden without hurting the solution accuracy. However, the major cut selection approaches heavily rely on heuristics, which strongly depend on the specific problem at hand and thus limit their generalization capability. In this paper, we propose a data-driven and generalizable cut selection approach, named Cut Ranking, in the settings of multiple instance learning. To measure the quality of the candidate cuts, a scoring function, which takes the instance-specific cut features as inputs, is trained and applied in cut ranking and selection. In order to evaluate our method, we conduct extensive experiments on both synthetic datasets and real-world datasets. Compared with commonly used heuristics for cut selection, the learning-based policy has shown to be more effective, and is capable of generalizing over multiple problems with different properties. Cut Ranking has been deployed in an industrial solver for large-scale MIPs. In the online A/B testing of the product planning problems with more than 10710^7 variables and constraints daily, Cut Ranking has achieved the average speedup ratio of 12.42% over the production solver without any accuracy loss of solution.Comment: Paper accepted at Pattern Recognition journa

    Time and multiple objectives in scheduling and routing problems

    Get PDF
    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost parameters change over time which makes optimization problems harder. For instance, in the transport sector, travel costs are a function of travel time which changes depending on the time of the day a vehicle is travelling (e.g., due to road congestion). Road congestion results in tremendous delays which lead to a decrease in the service quality and the responsiveness of logistic service providers. In Chapter 2, we develop a generic approach to deal with Multi-Objective Scheduling Problems (MOSPs) with State-Dependent Cost Parameters. The aim is to determine the set of Pareto solutions that capture the trade offs between the different conflicting objectives. Due to the complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The approximation has a provable worse case performance guarantee. Even though the generated approximate Pareto front consist of fewer solutions, it still represents a good coverage of the true Pareto front. Furthermore, considerable gains in computation times are achieved. In Chapter 3, the developed methodology is validated on the multi-objective timedependent knapsack problem. In the classical knapsack problem, the input consists of a knapsack with a finite capacity and a set of items, each with a certain weight and a cost. A feasible solution to the knapsack problem is a selection of items such that their total weight does not exceed the knapsack capacity. The goal is to maximize the single objective function consisting of the total pro t of the selected items. We extend the classical knapsack problem in two ways. First, we consider time-dependent profits (e.g., in a retail environment profit depends on whether it is Christmas or not)
    corecore