12 research outputs found

    Learning Equivariant Representations

    Get PDF
    State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is independent of absolute pixel positions. This property is essential to the success of CNNs in audio, image and video recognition tasks. In this thesis, we extend equivariance to other kinds of transformations, such as rotation and scaling. We propose equivariant models for different transformations defined by groups of symmetries. The main contributions are (i) polar transformer networks, achieving equivariance to the group of similarities on the plane, (ii) equivariant multi-view networks, achieving equivariance to the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving equivariance to the continuous 3D rotation group, (iv) cross-domain image embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v) spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving equivariance to 3D rotations for spherical vector fields. Applications include image classification, 3D shape classification and retrieval, panoramic image classification and segmentation, shape alignment and pose estimation. What these models have in common is that they leverage symmetries in the data to reduce sample and model complexity and improve generalization performance. The advantages are more significant on (but not limited to) challenging tasks where data is limited or input perturbations such as arbitrary rotations are present

    Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey

    Full text link
    While Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings, they are affected by some crucial weaknesses. On the one hand, DNNs depend on exploiting a vast amount of training data, whose labeling process is time-consuming and expensive. On the other hand, DNNs are often treated as black box systems, which complicates their evaluation and validation. Both problems can be mitigated by incorporating prior knowledge into the DNN. One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations of the problem to solve. This promises an increased data-efficiency and filter responses that are interpretable more easily. In this survey, we try to give a concise overview about different approaches to incorporate geometrical prior knowledge into DNNs. Additionally, we try to connect those methods to the field of 3D object detection for autonomous driving, where we expect promising results applying those methods.Comment: Survey Pape

    Multi-task near-field perception for autonomous driving using surround-view fisheye cameras

    Get PDF
    Die Bildung der Augen führte zum Urknall der Evolution. Die Dynamik änderte sich von einem primitiven Organismus, der auf den Kontakt mit der Nahrung wartete, zu einem Organismus, der durch visuelle Sensoren gesucht wurde. Das menschliche Auge ist eine der raffiniertesten Entwicklungen der Evolution, aber es hat immer noch Mängel. Der Mensch hat über Millionen von Jahren einen biologischen Wahrnehmungsalgorithmus entwickelt, der in der Lage ist, Autos zu fahren, Maschinen zu bedienen, Flugzeuge zu steuern und Schiffe zu navigieren. Die Automatisierung dieser Fähigkeiten für Computer ist entscheidend für verschiedene Anwendungen, darunter selbstfahrende Autos, Augmented Realität und architektonische Vermessung. Die visuelle Nahfeldwahrnehmung im Kontext von selbstfahrenden Autos kann die Umgebung in einem Bereich von 0 - 10 Metern und 360° Abdeckung um das Fahrzeug herum wahrnehmen. Sie ist eine entscheidende Entscheidungskomponente bei der Entwicklung eines sichereren automatisierten Fahrens. Jüngste Fortschritte im Bereich Computer Vision und Deep Learning in Verbindung mit hochwertigen Sensoren wie Kameras und LiDARs haben ausgereifte Lösungen für die visuelle Wahrnehmung hervorgebracht. Bisher stand die Fernfeldwahrnehmung im Vordergrund. Ein weiteres wichtiges Problem ist die begrenzte Rechenleistung, die für die Entwicklung von Echtzeit-Anwendungen zur Verfügung steht. Aufgrund dieses Engpasses kommt es häufig zu einem Kompromiss zwischen Leistung und Laufzeiteffizienz. Wir konzentrieren uns auf die folgenden Themen, um diese anzugehen: 1) Entwicklung von Nahfeld-Wahrnehmungsalgorithmen mit hoher Leistung und geringer Rechenkomplexität für verschiedene visuelle Wahrnehmungsaufgaben wie geometrische und semantische Aufgaben unter Verwendung von faltbaren neuronalen Netzen. 2) Verwendung von Multi-Task-Learning zur Überwindung von Rechenengpässen durch die gemeinsame Nutzung von initialen Faltungsschichten zwischen den Aufgaben und die Entwicklung von Optimierungsstrategien, die die Aufgaben ausbalancieren.The formation of eyes led to the big bang of evolution. The dynamics changed from a primitive organism waiting for the food to come into contact for eating food being sought after by visual sensors. The human eye is one of the most sophisticated developments of evolution, but it still has defects. Humans have evolved a biological perception algorithm capable of driving cars, operating machinery, piloting aircraft, and navigating ships over millions of years. Automating these capabilities for computers is critical for various applications, including self-driving cars, augmented reality, and architectural surveying. Near-field visual perception in the context of self-driving cars can perceive the environment in a range of 0 - 10 meters and 360° coverage around the vehicle. It is a critical decision-making component in the development of safer automated driving. Recent advances in computer vision and deep learning, in conjunction with high-quality sensors such as cameras and LiDARs, have fueled mature visual perception solutions. Until now, far-field perception has been the primary focus. Another significant issue is the limited processing power available for developing real-time applications. Because of this bottleneck, there is frequently a trade-off between performance and run-time efficiency. We concentrate on the following issues in order to address them: 1) Developing near-field perception algorithms with high performance and low computational complexity for various visual perception tasks such as geometric and semantic tasks using convolutional neural networks. 2) Using Multi-Task Learning to overcome computational bottlenecks by sharing initial convolutional layers between tasks and developing optimization strategies that balance tasks

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants

    Visual Guidance for Unmanned Aerial Vehicles with Deep Learning

    Full text link
    Unmanned Aerial Vehicles (UAVs) have been widely applied in the military and civilian domains. In recent years, the operation mode of UAVs is evolving from teleoperation to autonomous flight. In order to fulfill the goal of autonomous flight, a reliable guidance system is essential. Since the combination of Global Positioning System (GPS) and Inertial Navigation System (INS) systems cannot sustain autonomous flight in some situations where GPS can be degraded or unavailable, using computer vision as a primary method for UAV guidance has been widely explored. Moreover, GPS does not provide any information to the robot on the presence of obstacles. Stereo cameras have complex architecture and need a minimum baseline to generate disparity map. By contrast, monocular cameras are simple and require less hardware resources. Benefiting from state-of-the-art Deep Learning (DL) techniques, especially Convolutional Neural Networks (CNNs), a monocular camera is sufficient to extrapolate mid-level visual representations such as depth maps and optical flow (OF) maps from the environment. Therefore, the objective of this thesis is to develop a real-time visual guidance method for UAVs in cluttered environments using a monocular camera and DL. The three major tasks performed in this thesis are investigating the development of DL techniques and monocular depth estimation (MDE), developing real-time CNNs for MDE, and developing visual guidance methods on the basis of the developed MDE system. A comprehensive survey is conducted, which covers Structure from Motion (SfM)-based methods, traditional handcrafted feature-based methods, and state-of-the-art DL-based methods. More importantly, it also investigates the application of MDE in robotics. Based on the survey, two CNNs for MDE are developed. In addition to promising accuracy performance, these two CNNs run at high frame rates (126 fps and 90 fps respectively), on a single modest power Graphical Processing Unit (GPU). As regards the third task, the visual guidance for UAVs is first developed on top of the designed MDE networks. To improve the robustness of UAV guidance, OF maps are integrated into the developed visual guidance method. A cross-attention module is applied to fuse the features learned from the depth maps and OF maps. The fused features are then passed through a deep reinforcement learning (DRL) network to generate the policy for guiding the flight of UAV. Additionally, a simulation framework is developed which integrates AirSim, Unreal Engine and PyTorch. The effectiveness of the developed visual guidance method is validated through extensive experiments in the simulation framework

    Law professors’ existential online lifeworlds: an hermeneutic phenomenological study

    Get PDF
    Doctor of PhilosophyCurriculum and InstructionThomas VontzThis phenomenological study hermeneutically explores law professors’ felt experiences within online existential lifeworld spheres. Prose, poetry, color images, and virtual journeying provide descriptive and interpretive text suggesting expansion of Gadamer’s fusion of horizonal understanding. Law professors who teach asynchronously online selected five color images from pixabay.com corresponding with the five universal existential themes: body, space, time, relationships and material things/technology (van Manen, 2014) as catalysts to conversationally explore what it feels like to transition from classroom to online instruction. Multiple phenomenological, artistic, and scientific theories prismatically amplify and explain the study’s design: Gadamer’s hermeneutical circle of understanding (1960/2006), Termes six-point spherical perspective (2016), Einstein’s closed yet unbounded universe (Egdall, 2014), and Seamon’s concept of “at homeness” (2012). Dialogical understanding of Self and Other(s) through Gadamer’s call for festival and serious play (1960/2006) is activated: The reader is invited to interact with the study text through visual and auditory web experiences. Researcher’s hermeneutic and existential retelling of the professors’ conversations begins to unfold metaphorically around a table within a virtual forest. When researcher’s previously bracketed-away prejudice for incorporating synchronous modalities into online learning erupts, professors’ longing felt for classroom home actualizes and ultimately emerges as a sixth existential dimension proposed by the researcher. A culminating journey through virtual desert in search of online home continues the retelling and metaphorically incorporates all six existential themes. Dramatic changes in researcher’s lifeworld view, ways of knowing and being, self view, self action and pedagogical development as a result of conducting the study are summarized. Future research is implicated including exploration of professors’ existentially felt experiences while teaching synchronously online and deep-mining professorial empathy toward students. Factors that impinge on all law professors’ transitioning to online instruction contextually anchor the study: 1) Legal pedagogy’s evolution from 18th Century professional skills training through the late 19th Century intrusion of legal doctrine instruction, and 20th Century paralegal skills training; 2) The American Bar Association’s 21st century mandates for graduating students with both legal skills and legal doctrine training; 3) 21st Century pedagogical Immutables (teaching online, teaching legal job skills, teaching legal doctrine, teaching to standardized tests); and 4) 21st Century Protean Challenges (institution and student demand for technology-based instruction, the Global Legal Services Industry’s hierarchical control over legal education and practice, enrollment and tuition crises, multi-cultural limitations, and the pedagogical conundrum of choosing among multiple online design and delivery modalities)

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018
    corecore