1,113 research outputs found

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Relational clustering models for knowledge discovery and recommender systems

    Get PDF
    Cluster analysis is a fundamental research field in Knowledge Discovery and Data Mining (KDD). It aims at partitioning a given dataset into some homogeneous clusters so as to reflect the natural hidden data structure. Various heuristic or statistical approaches have been developed for analyzing propositional datasets. Nevertheless, in relational clustering the existence of multi-type relationships will greatly degrade the performance of traditional clustering algorithms. This issue motivates us to find more effective algorithms to conduct the cluster analysis upon relational datasets. In this thesis we comprehensively study the idea of Representative Objects for approximating data distribution and then design a multi-phase clustering framework for analyzing relational datasets with high effectiveness and efficiency. The second task considered in this thesis is to provide some better data models for people as well as machines to browse and navigate a dataset. The hierarchical taxonomy is widely used for this purpose. Compared with manually created taxonomies, automatically derived ones are more appealing because of their low creation/maintenance cost and high scalability. Up to now, the taxonomy generation techniques are mainly used to organize document corpus. We investigate the possibility of utilizing them upon relational datasets and then propose some algorithmic improvements. Another non-trivial problem is how to assign suitable labels for the taxonomic nodes so as to credibly summarize the content of each node. Unfortunately, this field has not been investigated sufficiently to the best of our knowledge, and so we attempt to fill the gap by proposing some novel approaches. The final goal of our cluster analysis and taxonomy generation techniques is to improve the scalability of recommender systems that are developed to tackle the problem of information overload. Recent research in recommender systems integrates the exploitation of domain knowledge to improve the recommendation quality, which however reduces the scalability of the whole system at the same time. We address this issue by applying the automatically derived taxonomy to preserve the pair-wise similarities between items, and then modeling the user visits by another hierarchical structure. Experimental results show that the computational complexity of the recommendation procedure can be greatly reduced and thus the system scalability be improved

    An Automatic Ontology Generation Framework with An Organizational Perspective

    Get PDF
    Ontologies have been known for their powerful semantic representation of knowledge. However, ontologies cannot automatically evolve to reflect updates that occur in respective domains. To address this limitation, researchers have called for automatic ontology generation from unstructured text corpus. Unfortunately, systems that aim to generate ontologies from unstructured text corpus are domain-specific and require manual intervention. In addition, they suffer from uncertainty in creating concept linkages and difficulty in finding axioms for the same concept. Knowledge Graphs (KGs) has emerged as a powerful model for the dynamic representation of knowledge. However, KGs have many quality limitations and need extensive refinement. This research aims to develop a novel domain-independent automatic ontology generation framework that converts unstructured text corpus into domain consistent ontological form. The framework generates KGs from unstructured text corpus as well as refine and correct them to be consistent with domain ontologies. The power of the proposed automatically generated ontology is that it integrates the dynamic features of KGs and the quality features of ontologies

    End-to-End Entity Resolution for Big Data: A Survey

    Get PDF
    One of the most important tasks for improving data quality and the reliability of data analytics results is Entity Resolution (ER). ER aims to identify different descriptions that refer to the same real-world entity, and remains a challenging problem. While previous works have studied specific aspects of ER (and mostly in traditional settings), in this survey, we provide for the first time an end-to-end view of modern ER workflows, and of the novel aspects of entity indexing and matching methods in order to cope with more than one of the Big Data characteristics simultaneously. We present the basic concepts, processing steps and execution strategies that have been proposed by different communities, i.e., database, semantic Web and machine learning, in order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions used by real-world applications. Finally, we provide a synthetic discussion of the existing approaches, and conclude with a detailed presentation of open research directions

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    Very-High-Resolution SAR Images and Linked Open Data Analytics Based on Ontologies

    Get PDF
    In this paper, we deal with the integration of multiple sources of information such as Earth observation (EO) synthetic aperture radar (SAR) images and their metadata, semantic descriptors of the image content, as well as other publicly available geospatial data sources expressed as linked open data for posing complex queries in order to support geospatial data analytics. Our approach lays the foundations for the development of richer tools and applications that focus on EO image analytics using ontologies and linked open data. We introduce a system architecture where a common satellite image product is transformed from its initial format into to actionable intelligence information, which includes image descriptors, metadata, image tiles, and semantic labels resulting in an EO-data model. We also create a SAR image ontology based on our EO-data model and a two-level taxonomy classification scheme of the image content. We demonstrate our approach by linking high-resolution TerraSAR-X images with information from CORINE Land Cover (CLC), Urban Atlas (UA), GeoNames, and OpenStreetMap (OSM), which are represented in the standard triple model of the resource description frameworks (RDFs)

    Type prediction in RDF knowledge bases using hierarchical multilabel classification

    Get PDF
    Large Semantic Web knowledge bases are often noisy, incorrect, and incomplete with respect to type information. Automatic type prediction can help reduce such incompleteness, and, as previous works show, statistical methods are well-suited for this kind of data. Since most Semantic Web knowledge bases come with an ontology defining a type hierarchy, in this paper, we rephrase the type prediction problem as a hierarchical multilabel classification problem. We propose SLCN, a modification of the local classifier per node approach, which performs feature selection, instance sampling, and class balancing for each local classifier. Our approach improves scalability, facilitating its application on large Semantic Web datasets with high-dimensional feature and label spaces. We compare the performance of our proposed method with a state-of-the-art type prediction approach and popular hierarchical multilabel classifiers, and report on experiments with large-scale RDF datasets
    corecore