729 research outputs found

    Multi-object tracking in video using labeled random finite sets

    Get PDF
    The safety of industrial mobile platforms (such as fork lifts and boom lifts) is of major concern in the world today as industry embraces the concepts of Industry 4.0. The existing safety methods are predominantly based on Radio Frequency Identification (RFID) technology and therefore can only determine the distance at which a pedestrian who is wearing an RFID tag is standing. Other methods use expensive laser scanners to map the surrounding and warn the driver accordingly. The aim of this research project is to improve the safety of industrial mobile platforms, by detecting and tracking pedestrians in the path of the mobile platform, using readily available cheap camera modules. In order to achieve this aim, this research focuses on multi-object tracking which is one of the most ubiquitously addressed problems in the field of \textit{Computer Vision}. Algorithms that can track targets under severe conditions, such as varying number of objects, occlusion, illumination changes and abrupt movements of the objects are investigated in this research project. Furthermore, a substantial focus is given to improving the accuracy and, performance and to handling misdetections and false alarms. In order to formulate these algorithms, the recently introduced concept of Random Finite Sets (RFS) is used as the underlying mathematical framework. The algorithms formulated to meet the above criteria were tested on standard visual tracking datasets as well as on a dataset which was created by our research group, for performance and accuracy using standard performance and accuracy metrics that are widely used in the computer vision literature. These results were compared with numerous state-of-the-art methods and are shown to outperform or perform favourably in terms of the metrics mentioned above

    Methods for Online UAV Path Planning for Tracking Multiple Objects

    Get PDF
    Unmanned aerial vehicles (UAVs) or drones have rapidly evolved to enable carrying various sensors such as thermal sensors for vision or antennas for radio waves. Therefore, drones can be transformative for applications such as surveillance and monitoring because they have the capability to greatly reduce the time and cost associated with traditional tasking methods. Realising this potential necessitates equipping UAVs with the ability to perform missions autonomously. This dissertation considers the problems of online path planning for UAVs for the fundamental task of surveillance comprising of tracking and discovering multiple mobile objects in a scene. Tracking and discovering an unknown and time-varying number of objects is a challenging problem in itself. Objects such as people or wildlife tend to switch between various modes of movements. Measurements received by the UAV’s on-board sensors are often very noisy. In practice, the on-board sensors have a limited field of view (FoV), hence, the UAV needs to move within range of the mobile objects that are scattered throughout a scene. This is extremely challenging because neither the exact number nor locations of the objects of interest are available to the UAV. Planning the path for UAVs to effectively detect and track multi-objects in such environments poses additional challenges. Path planning techniques for tracking a single object are not applicable. Since there are multiple moving objects appearing and disappearing in the region, following only certain objects to localise them accurately implies that a UAV is likely to miss many other objects. Furthermore, online path planning for multi-UAVs remains challenging due to the exponential complexity of multi-agent coordination problems. In this dissertation, we consider the problem of online path planning for UAV-based localisation and tracking of multi-objects. First, we realised a low cost on-board radio receiver system on aUAV and demonstrated the capability of the drone-based platform for autonomously tracking and locating multiple mobile radio-tagged objects in field trials. Second, we devised a track-before-detect filter coupled with an online path planning algorithm for joint detection and tracking of radio-tagged objects to achieve better performance in noisy environments. Third, we developed a multi-objective planning algorithm for multi-agents to track and search multi-objects under the practical constraint of detection range limited on-board sensors (or FoV limited sensors). Our formulation leads to a multi-objective value function that is a monotone submodular set function. Consequently, it allows us to employ a greedy algorithm for effectively controlling multi-agents with a performance guarantee for tracking discovered objects while searching for undiscovered mobile objects under practical constraints of limited FoV sensors. Fourth, we devised a fast distributed tracking algorithm that can effectively track multi-objects for a network of stationary agents with different FoVs. This is the first such solution to this problem. The proposed method can significantly improve capabilities of a network of agents to track a large number of objects moving in and out of the limited FoV of the agents’ sensors compared to existing methods that do not consider the problem of unknown and limited FoV of sensors.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)
    • …
    corecore