8,184 research outputs found

    Using RDF to Model the Structure and Process of Systems

    Full text link
    Many systems can be described in terms of networks of discrete elements and their various relationships to one another. A semantic network, or multi-relational network, is a directed labeled graph consisting of a heterogeneous set of entities connected by a heterogeneous set of relationships. Semantic networks serve as a promising general-purpose modeling substrate for complex systems. Various standardized formats and tools are now available to support practical, large-scale semantic network models. First, the Resource Description Framework (RDF) offers a standardized semantic network data model that can be further formalized by ontology modeling languages such as RDF Schema (RDFS) and the Web Ontology Language (OWL). Second, the recent introduction of highly performant triple-stores (i.e. semantic network databases) allows semantic network models on the order of 10910^9 edges to be efficiently stored and manipulated. RDF and its related technologies are currently used extensively in the domains of computer science, digital library science, and the biological sciences. This article will provide an introduction to RDF/RDFS/OWL and an examination of its suitability to model discrete element complex systems.Comment: International Conference on Complex Systems, Boston MA, October 200

    Data Model and Query Constructs for Versatile Web Query Languages

    Get PDF
    As the Semantic Web is gaining momentum, the need for truly versatile query languages becomes increasingly apparent. A Web query language is called versatile if it can access in the same query program data in different formats (e.g. XML and RDF). Most query languages are not versatile: they have not been specifically designed to cope with both worlds, providing a uniform language and common constructs to query and transform data in various formats. Moreover, most of them do not provide a flexible data model that is powerful enough to naturally convey both Semantic Web data formats (especially RDF and Topic Maps) and XML. This article highlights challenges related to the data model and language constructs for querying both standard Web and Semantic Web data with an emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data model and querying constructs are particularly well-suited for the Semantic Web, but that some adjustments of the Xcerpt syntax allow for even more effective and natural querying of RDF and Topic Maps

    ITR: A grammar-based graph compressor supporting fast neighborhood queries

    Full text link
    Neighborhood queries are the most common queries on graphs; thus, it is desirable to answer them efficiently on compressed data structures. We present a compression scheme called Incidence-Type-RePair (ITR) for graphs with labeled nodes and labeled edges based on RePair and apply the scheme to RDF graphs. We show that ITR speeds up neighborhood queries to only a few milliseconds and thereby outperforms existing solutions while providing a compression size comparable to existing RDF graph compressors

    Context-Free Path Queries on RDF Graphs

    Full text link
    Navigational graph queries are an important class of queries that canextract implicit binary relations over the nodes of input graphs. Most of the navigational query languages used in the RDF community, e.g. property paths in W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the regular expressions. It is known that regular expressions have limited expressivity; for instance, some natural queries, like same generation-queries, are not expressible with regular expressions. To overcome this limitation, in this paper, we present cfSPARQL, an extension of SPARQL query language equipped with context-free grammars. The cfSPARQL language is strictly more expressive than property paths and nested expressions. The additional expressivity can be used for modelling graph similarities, graph summarization and ontology alignment. Despite the increasing expressivity, we show that cfSPARQL still enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page

    Distributed Processing of Generalized Graph-Pattern Queries in SPARQL 1.1

    Get PDF
    We propose an efficient and scalable architecture for processing generalized graph-pattern queries as they are specified by the current W3C recommendation of the SPARQL 1.1 "Query Language" component. Specifically, the class of queries we consider consists of sets of SPARQL triple patterns with labeled property paths. From a relational perspective, this class resolves to conjunctive queries of relational joins with additional graph-reachability predicates. For the scalable, i.e., distributed, processing of this kind of queries over very large RDF collections, we develop a suitable partitioning and indexing scheme, which allows us to shard the RDF triples over an entire cluster of compute nodes and to process an incoming SPARQL query over all of the relevant graph partitions (and thus compute nodes) in parallel. Unlike most prior works in this field, we specifically aim at the unified optimization and distributed processing of queries consisting of both relational joins and graph-reachability predicates. All communication among the compute nodes is established via a proprietary, asynchronous communication protocol based on the Message Passing Interface

    A Perfect Match for Reasoning, Explanation, and Reason Maintenance

    Get PDF
    Path query languages have been previously shown to com- plement RDF rule languages in a natural way and have been used as a means to implement the RDFS derivation rules. RPL is a novel path query language specifically designed to be incorporated with RDF rules and comes in three avors: Node-, edge- and path- avored expressions allow to express conditional regular expressions over the nodes, edges, or nodes and edges appearing on paths within RDF graphs. Providing reg- ular string expressions and negation, RPL is more expressive than other RDF path languages that have been proposed. We give a compositional semantics for RPL and show that it can be evaluated efficiently, while several possible extensions of it cannot
    • 

    corecore