185 research outputs found

    Parsing the SynTagRus Treebank of Russian

    Get PDF
    We present the first results on parsing the SYNTAGRUS tree bank of Russian with a data-driven dependency parser, achieving labeled attachment score of over 82%and an unlabeled attachment score of 89%.A feature analysis shows that high parsing accuracy is crucially dependent on the use of both lexical and morphological features. We conjecture that the latter result can be generalized to richly inflected languages in general, provided that sufficient amounts of training data are available

    Dependency parsing resources for French: Converting acquired lexical functional grammar F-Structure annotations and parsing F-Structures directly

    Get PDF
    Recent years have seen considerable success in the generation of automatically obtained wide-coverage deep grammars for natural language processing, given reliable and large CFG-like treebanks. For research within Lexical Functional Grammar framework, these deep grammars are typically based on an extended PCFG parsing scheme from which dependencies are extracted. However, increasing success in statistical dependency parsing suggests that such deep grammar approaches to statistical parsing could be streamlined. We explore this novel approach to deep grammar parsing within the framework of LFG in this paper, for French, showing that best results (an f-score of 69.46) for the established integrated architecture may be obtained for French

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application

    Spanning Tree Methods for Discriminative Training of Dependency Parsers

    Get PDF
    Untyped dependency parsing can be viewed as the problem of finding maximum spanning trees (MSTs) in directed graphs. Using this representation, the Eisner (1996) parsing algorithm is sufficient for searching the space of projective trees. More importantly, the representation is extended naturally to non-projective parsing using Chu-Liu-Edmonds (Chu and Liu, 1965; Edmonds, 1967) MST algorithm. These efficient parse search methods support large-margin discriminative training methods for learning dependency parsers. We evaluate these methods experimentally on the English and Czech treebanks

    Investigating multilingual dependency parsing

    Get PDF
    In this paper, we describe a system for the CoNLL-X shared task of multilingual dependency parsing. It uses a baseline Nivre’s parser (Nivre, 2003) that first identifies the parse actions and then labels the dependency arcs. These two steps are implemented as SVM classifiers using LIBSVM. Features take into account the static context as well as relations dynamically built during parsing. We experimented two main additions to our implementation of Nivre’s parser: N-best search and bidirectional parsing. We trained the parser in both left-right and right-left directions and we combined the results. To construct a single-head, rooted, and cycle-free tree, we applied the Chu-Liu/Edmonds optimization algorithm. We ran the same algorithm with the same parameters on all the languages

    Improving the Arc-Eager Model with Reverse Parsing

    Get PDF
    A known way to improve the accuracy of dependency parsers is to combine several different parsing algorithms, in such a way that the weaknesses of each of the models can be compensated by the strengths of others. For example, voting-based combination schemes are based on variants of the idea of analyzing each sentence with various parsers, and constructing a combined output where the head of each node is determined by "majority vote" among the different parsers. Typically, such approaches combine very different parsing models to take advantage of the variability in the parsing errors they make. In this paper, we show that consistent improvements in accuracy can be obtained in a much simpler way by combining a single parser with itself. In particular, we start with a greedy implementation of the Nivre pseudo-projective arc-eager algorithm, a well-known left-to-right transition-based parser, and we combine it with a "mirrored" version of the algorithm that analyzes sentences from right to left. To determine which of the two obtained outputs we trust for the head of each node, we use simple criteria based on the length and position of dependency arcs. Experiments on several datasets from the CoNLL-X shared task and the WSJ section of the English Penn Treebank show that the novel combination system obtains better performance than the baseline arc-eager parser in all cases. To test the generality of the approach, we also perform experiments with a different transition system (arc-standard) and a different search strategy (beam search), obtaining similar improvements in all these settings

    Performance-oriented dependency parsing

    Get PDF
    In the last decade a lot of dependency parsers have been developed. This book describes the motivation for the development of yet another parser - MDParser. The state of the art is presented and the deficits of the current developments are discussed. The main problem of the current parsers is that the task of dependency parsing is treated independently of what happens before and after it. However, in practice parsing is rarely done for the sake of parsing itself, but rather in order to use the results in a follow-up application. Additionally, current parsers are accuracy-oriented and focus only on the quality of the results, neglecting other important properties, especially efficiency. The evaluation of some NLP technologies is sometimes as difficult as the task itself. For dependency parsing it was long thought not to be the case, however, some recent works show that the current evaluation possibilities are limited. This book proposes a methodology to account for the weaknesses and combine the strengths of the current approaches. Finally, MDParser is evaluated against other state-of-the-art parsers. The results show that it is the fastest parser currently available and it is able to process plain text, which other parsers usually cannot. The results are slightly behind the top accuracies in the field, however, it is demonstrated that it is not decisive for applications

    Layer-Based Dependency Parsing

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Simple semi-supervised dependency parsing

    Get PDF
    We present a simple and effective semisupervised method for training dependency parsers. We focus on the problem of lexical representation, introducing features that incorporate word clusters derived from a large unannotated corpus. We demonstrate the effectiveness of the approach in a series of dependency parsing experiments on the Penn Treebank and Prague Dependency Treebank, and we show that the cluster-based features yield substantial gains in performance across a wide range of conditions. For example, in the case of English unlabeled second-order parsing, we improve from a baseline accuracy of 92:02% to 93:16%, and in the case of Czech unlabeled second-order parsing, we improve from a baseline accuracy of 86:13% to 87:13%. In addition, we demonstrate that our method also improves performance when small amounts of training data are available, and can roughly halve the amount of supervised data required to reach a desired level of performance.Peer ReviewedPostprint (author’s final draft
    • …
    corecore