4,443 research outputs found

    Similarity-based and Iterative Label Noise Filters for Monotonic Classification

    Get PDF
    Monotonic ordinal classification has received an increasing interest in the latest years. Building monotone models from these problems usually requires datasets that verify monotonic relationships among the samples. When the monotonic relationships are not met, changing the labels may be a viable option, but the risk is high: wrong label changes would completely change the information contained in the data. In this work, we tackle the construction of monotone datasets by removing the wrong or noisy examples that violate monotonicity restrictions. We propose two monotonic noise filtering algorithms to preprocess the ordinal datasets and improve the monotonic relations between instances. The experiments are carried out over eleven ordinal datasets, showing that the application of the proposed filters improve the prediction capabilities over different levels of noise

    Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification

    Full text link
    Objective. The main goal of this work is to develop a model for multi-sensor signals such as MEG or EEG signals, that accounts for the inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI type experiments. Approach. The method involves linear mixed effects statistical model, wavelet transform and spatial filtering, and aims at the characterization of localized discriminant features in multi-sensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e. discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data, in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves on earlier results on similar problems, and the three main ingredients all play an important role

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality
    • …
    corecore