21,235 research outputs found

    Optimizing Ranking Measures for Compact Binary Code Learning

    Full text link
    Hashing has proven a valuable tool for large-scale information retrieval. Despite much success, existing hashing methods optimize over simple objectives such as the reconstruction error or graph Laplacian related loss functions, instead of the performance evaluation criteria of interest---multivariate performance measures such as the AUC and NDCG. Here we present a general framework (termed StructHash) that allows one to directly optimize multivariate performance measures. The resulting optimization problem can involve exponentially or infinitely many variables and constraints, which is more challenging than standard structured output learning. To solve the StructHash optimization problem, we use a combination of column generation and cutting-plane techniques. We demonstrate the generality of StructHash by applying it to ranking prediction and image retrieval, and show that it outperforms a few state-of-the-art hashing methods.Comment: Appearing in Proc. European Conference on Computer Vision 201

    Surrogate Functions for Maximizing Precision at the Top

    Full text link
    The problem of maximizing precision at the top of a ranked list, often dubbed Precision@k (prec@k), finds relevance in myriad learning applications such as ranking, multi-label classification, and learning with severe label imbalance. However, despite its popularity, there exist significant gaps in our understanding of this problem and its associated performance measure. The most notable of these is the lack of a convex upper bounding surrogate for prec@k. We also lack scalable perceptron and stochastic gradient descent algorithms for optimizing this performance measure. In this paper we make key contributions in these directions. At the heart of our results is a family of truly upper bounding surrogates for prec@k. These surrogates are motivated in a principled manner and enjoy attractive properties such as consistency to prec@k under various natural margin/noise conditions. These surrogates are then used to design a class of novel perceptron algorithms for optimizing prec@k with provable mistake bounds. We also devise scalable stochastic gradient descent style methods for this problem with provable convergence bounds. Our proofs rely on novel uniform convergence bounds which require an in-depth analysis of the structural properties of prec@k and its surrogates. We conclude with experimental results comparing our algorithms with state-of-the-art cutting plane and stochastic gradient algorithms for maximizing [email protected]: To appear in the the proceedings of the 32nd International Conference on Machine Learning (ICML 2015

    Efficient AUC Optimization for Information Ranking Applications

    Full text link
    Adequate evaluation of an information retrieval system to estimate future performance is a crucial task. Area under the ROC curve (AUC) is widely used to evaluate the generalization of a retrieval system. However, the objective function optimized in many retrieval systems is the error rate and not the AUC value. This paper provides an efficient and effective non-linear approach to optimize AUC using additive regression trees, with a special emphasis on the use of multi-class AUC (MAUC) because multiple relevance levels are widely used in many ranking applications. Compared to a conventional linear approach, the performance of the non-linear approach is comparable on binary-relevance benchmark datasets and is better on multi-relevance benchmark datasets.Comment: 12 page

    Hashing as Tie-Aware Learning to Rank

    Full text link
    Hashing, or learning binary embeddings of data, is frequently used in nearest neighbor retrieval. In this paper, we develop learning to rank formulations for hashing, aimed at directly optimizing ranking-based evaluation metrics such as Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG). We first observe that the integer-valued Hamming distance often leads to tied rankings, and propose to use tie-aware versions of AP and NDCG to evaluate hashing for retrieval. Then, to optimize tie-aware ranking metrics, we derive their continuous relaxations, and perform gradient-based optimization with deep neural networks. Our results establish the new state-of-the-art for image retrieval by Hamming ranking in common benchmarks.Comment: 15 pages, 3 figures. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Ranking-based Deep Cross-modal Hashing

    Full text link
    Cross-modal hashing has been receiving increasing interests for its low storage cost and fast query speed in multi-modal data retrievals. However, most existing hashing methods are based on hand-crafted or raw level features of objects, which may not be optimally compatible with the coding process. Besides, these hashing methods are mainly designed to handle simple pairwise similarity. The complex multilevel ranking semantic structure of instances associated with multiple labels has not been well explored yet. In this paper, we propose a ranking-based deep cross-modal hashing approach (RDCMH). RDCMH firstly uses the feature and label information of data to derive a semi-supervised semantic ranking list. Next, to expand the semantic representation power of hand-crafted features, RDCMH integrates the semantic ranking information into deep cross-modal hashing and jointly optimizes the compatible parameters of deep feature representations and of hashing functions. Experiments on real multi-modal datasets show that RDCMH outperforms other competitive baselines and achieves the state-of-the-art performance in cross-modal retrieval applications
    • …
    corecore