177 research outputs found

    Label Pre-annotation for Building Non-projective Dependency Treebanks for French

    Get PDF
    posterInternational audienceThe current interest in accurate dependency parsing make it necessary to build dependency treebanks for French containing both projective and non-projective dependencies. In order to alleviate the work of the annotator, we propose to automatically pre-annotate the sentences with the labels of the dependencies ending on the words. The selection of the dependency labels reduces the ambiguity of the parsing. We show that a maximum entropy Markov model method reaches the label accuracy score of a standard dependency parser (MaltParser). Moreover, this method allows to find more than one label per word, i.e. the more probable ones, in order to improve the recall score. It improves the quality of the parsing step of the annotation process. Therefore, the inclusion of the method in the process of annotation makes the work quicker and more natural to annotators

    Comparing constituency and dependency representations for SMT phrase-extraction

    Get PDF
    We consider the value of replacing and/or combining string-based methods with syntax-based methods for phrase-based statistical machine translation (PBSMT), and we also consider the relative merits of using constituency-annotated vs. dependency-annotated training data. We automatically derive two subtree-aligned treebanks, dependency-based and constituency-based, from a parallel English–French corpus and extract syntactically motivated word- and phrase-pairs. We automatically measure PB-SMT quality. The results show that combining string-based and syntax-based word- and phrase-pairs can improve translation quality irrespective of the type of syntactic annotation. Furthermore, using dependency annotation yields greater translation quality than constituency annotation for PB-SMT

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    Dependency parsing resources for French: Converting acquired lexical functional grammar F-Structure annotations and parsing F-Structures directly

    Get PDF
    Recent years have seen considerable success in the generation of automatically obtained wide-coverage deep grammars for natural language processing, given reliable and large CFG-like treebanks. For research within Lexical Functional Grammar framework, these deep grammars are typically based on an extended PCFG parsing scheme from which dependencies are extracted. However, increasing success in statistical dependency parsing suggests that such deep grammar approaches to statistical parsing could be streamlined. We explore this novel approach to deep grammar parsing within the framework of LFG in this paper, for French, showing that best results (an f-score of 69.46) for the established integrated architecture may be obtained for French

    Overview of the SPMRL 2013 shared task: cross-framework evaluation of parsing morphologically rich languages

    Get PDF
    This paper reports on the first shared task on statistical parsing of morphologically rich languages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the evaluation metrics for parsing MRLs given different representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios

    Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich Languages

    Get PDF
    International audienceThis paper reports on the first shared task on statistical parsing of morphologically rich lan- guages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the eval- uation metrics for parsing MRLs given dif- ferent representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios

    Proceedings

    Get PDF
    Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories. Editors: Markus Dickinson, Kaili Müürisep and Marco Passarotti. NEALT Proceedings Series, Vol. 9 (2010), 268 pages. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15891

    Treebank-Based Deep Grammar Acquisition for French Probabilistic Parsing Resources

    Get PDF
    Motivated by the expense in time and other resources to produce hand-crafted grammars, there has been increased interest in wide-coverage grammars automatically obtained from treebanks. In particular, recent years have seen a move towards acquiring deep (LFG, HPSG and CCG) resources that can represent information absent from simple CFG-type structured treebanks and which are considered to produce more language-neutral linguistic representations, such as syntactic dependency trees. As is often the case in early pioneering work in natural language processing, English has been the focus of attention in the first efforts towards acquiring treebank-based deep-grammar resources, followed by treatments of, for example, German, Japanese, Chinese and Spanish. However, to date no comparable large-scale automatically acquired deep-grammar resources have been obtained for French. The goal of the research presented in this thesis is to develop, implement, and evaluate treebank-based deep-grammar acquisition techniques for French. Along the way towards achieving this goal, this thesis presents the derivation of a new treebank for French from the Paris 7 Treebank, the Modified French Treebank, a cleaner, more coherent treebank with several transformed structures and new linguistic analyses. Statistical parsers trained on this data outperform those trained on the original Paris 7 Treebank, which has five times the amount of data. The Modified French Treebank is the data source used for the development of treebank-based automatic deep-grammar acquisition for LFG parsing resources for French, based on an f-structure annotation algorithm for this treebank. LFG CFG-based parsing architectures are then extended and tested, achieving a competitive best f-score of 86.73% for all features. The CFG-based parsing architectures are then complemented with an alternative dependency-based statistical parsing approach, obviating the CFG-based parsing step, and instead directly parsing strings into f-structures

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea
    corecore