18,539 research outputs found

    Keypoint Transfer for Fast Whole-Body Segmentation

    Full text link
    We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.Comment: Accepted for publication at IEEE Transactions on Medical Imagin

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Node Classification in Uncertain Graphs

    Full text link
    In many real applications that use and analyze networked data, the links in the network graph may be erroneous, or derived from probabilistic techniques. In such cases, the node classification problem can be challenging, since the unreliability of the links may affect the final results of the classification process. If the information about link reliability is not used explicitly, the classification accuracy in the underlying network may be affected adversely. In this paper, we focus on situations that require the analysis of the uncertainty that is present in the graph structure. We study the novel problem of node classification in uncertain graphs, by treating uncertainty as a first-class citizen. We propose two techniques based on a Bayes model and automatic parameter selection, and show that the incorporation of uncertainty in the classification process as a first-class citizen is beneficial. We experimentally evaluate the proposed approach using different real data sets, and study the behavior of the algorithms under different conditions. The results demonstrate the effectiveness and efficiency of our approach
    • …
    corecore