430 research outputs found

    Mobile-IP ad-hoc network MPLS-based with QoS support.

    Get PDF
    The support for Quality of Service (QoS) is the main focus of this thesis. Major issues and challenges for Mobile-IP Ad-Hoc Networks (MANETs) to support QoS in a multi-layer manner are considered discussed and investigated through simulation setups. Different parameters contributing to the subjective measures of QoS have been considered and consequently, appropriate testbeds were formed to measure these parameters and compare them to other schemes to check for superiority. These parameters are: Maximum Round-Trip Delay (MRTD), Minimum Bandwidth Guaranteed (MBG), Bit Error Rate (BER), Packet Loss Ratio (PER), End-To-End Delay (ETED), and Packet Drop Ratio (PDR) to name a few. For network simulations, NS-II (Network Simulator Version II) and OPNET simulation software systems were used.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A355. Source: Masters Abstracts International, Volume: 44-03, page: 1444. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    The internet: A global telecommunications solution?

    Full text link
    The provision and support of new distributed multimedia services are of prime concern for telecommunications operators and suppliers. Clearly, the potential of the latest Internet protocols to contribute communications components is of considerable interest to them. In this article we first review some of the new types of application and their requirements, and identify the need to support applications that have strict QoS requirements, the so-called critical applications. We review two proposals for enhancing the Internet service architecture. In addition to the integrated services work of the IETF, we look at the more recent proposals for differentiated services in the Internet. We then individually review recent protocol developments proposed to improve the Internet, and to support real-time and multimedia communications. These are IPv6 (the new version of the Internet Protocol), Resource reSerVation Protocol, and Multiprotocol Label Switching, respectively. In each case, we attempt to provide critical reviews in order to assess their suitability for this purpose. Finally, we indicate what the basis of the future infrastructure might be in order to support the full variety of application requirements

    Performance Evaluation of MPLS in a Virtualized Service Provider Core (with/without Class of Service)

    Get PDF
    The last decade has witnessed a major change in the types of traffic scaling the Internet. With the development of real-time applications several challenges were faced within traditional IP networks. Some of these challenges are delay, increased costs faced by the service provider and customer, limited scalability, separate infrastructure costs and high administrative overheads to manage large networks etc. To combat these challenges, researchers have steered towards finding alternate solutions. Over the recent years, we have seen an introduction of a number of virtualized platforms and solutions being offered in the networking industry. Virtual load balancers, virtual firewalls, virtual routers, virtual intrusion detection and preventions systems are just a few examples within the Network Function Virtualization world! Service Providers are trying to find solutions where they could reduce operational expenses while at the same time meet the growing bandwidth demands of their customers. The main aim of this thesis is to evaluate the performance of voice, data and video traffic in a virtualized service provider core. Observations are made on how these traffic types perform on congested vs uncongested links and how Quality of Service treats traffic in a virtualized Service Provider Core using Round Trip Time as a performance metric. This thesis also tries to find if resiliency features such as Fast Reroute provide an additional advantage in failover scenarios within virtualized service provider cores. Juniper Networks vSRX are used to replicate virtual routers in a virtualized service provider core. Twenty-Four tests are carried out to gain a better understanding of how real-time applications and resiliency methods perform in virtualized networks. It is observed that a trade-off exists when introducing QoS on congested primary and secondary label switched paths. What can be observed thru the graphs is having Quality of Service enabled drops more packets however gives us the advantage of lower Round Trip Time for in-profile traffic. On the hand, having Quality of Service disabled, permits more traffic but leads to bandwidth contention between the three traffic classes leading to higher Round-Trip Times. The true benefit of QoS is seen in traffic congestion scenarios. The test bed built in this thesis, shows us that Fast Reroute does not add a significant benefit to aid in the reduction of packet loss during failover scenarios between primary and secondary paths. However, in certain scenarios fast reroute does seem to reduce packet loss specifically for data traffic

    vrfinder: Finding outbound addresses in traceroute

    Get PDF
    Current methods to analyze the Internet's router-level topology with paths collected using traceroute assume that the source address for each router in the path is either an inbound or off-path address on each router. In this work, we show that outbound addresses are common in our Internet-wide traceroute dataset collected by CAIDA's Ark vantage points in January 2020, accounting for 1.7% - 5.8% of the addresses seen at some point before the end of a traceroute. This phenomenon can lead to mistakes in Internet topology analysis, such as inferring router ownership and identifying interdomain links. We hypothesize that the primary contributor to outbound addresses is Layer 3 Virtual Private Networks (L3VPNs), and propose vrfinder, a technique for identifying L3VPN outbound addresses in traceroute collections. We validate vrfinder against ground truth from two large research and education networks, demonstrating high precision (100.0%) and recall (82.1% - 95.3%). We also show the benefit of accounting for L3VPNs in traceroute analysis through extensions to bdrmapIT, increasing the accuracy of its router ownership inferences for L3VPN outbound addresses from 61.5% - 79.4% to 88.9% - 95.5%

    Tiered Based Addressing in Internetwork Routing Protocols for the Future Internet

    Get PDF
    The current Internet has exhibited a remarkable sustenance to evolution and growth; however, it is facing unprecedented challenges and may not be able to continue to sustain this evolution and growth in the future because it is based on design decisions made in the 1970s when the TCP/IP concepts were developed. The research thus has provided incremental solutions to the evolving Internet to address every new vulnerabilities. As a result, the Internet has increased in complexity, which makes it hard to manage, more vulnerable to emerging threats, and more fragile in the face of new requirements. With a goal towards overcoming this situation, a clean-slate future Internet architecture design paradigm has been suggested by the research communities. This research is focused on addressing and routing for a clean-slate future Internet architecture, called the Floating Cloud Tiered (FCT) internetworking model. The major goals of this study are: (i) to address the two related problems of routing scalability and addressing, through an approach which would leverage the existing structures in the current Internet architecture, (ii) to propose a solution that is acceptable to the ISP community that supports the Internet, and lastly (iii) to provide a transition platform and mechanism which is very essential to the successful deployment of the proposed design

    Implementación de un sistema SDN para la movilidad en redes OMNIRAN

    Get PDF
    This document details all the information needed to understand and test distributed mobility management using the SDN paradigm. This project stars by an analysis of the mobility problem in dense networks. Traditionally mobility has been managed with hierarchical approaches extending the current mobility protocols. But thinking in the future evolution of the network into dense environments some scalability problems appear. The traditional centralized elements may not be able to handle all the traffic in the network and bottlenecks appear at the Mobility Anchors. Nowadays, the problems related to scalability are mostly resolved with hardware upgrades, but in dense environments this couldn’t be enough and surely it would be quite expensive. To find a solution to this problem the IETF has chartered the Distributed Mobility Management (DMM) Group.This project focus on implementing a DMM-based mobility solution designed within the EU FP7 CROWD project. Once the analysis of the problem ended and the requirements of the theoretical solution were defined, we developed all the necessary elements to physically build a distributed network using SDN to manage layer 2 and layer 3.The entities of the network are defined by the CROWD projectin its related publications[9][10]. These districts were run using an SDN implementation called OpenFlow. With all the elements developed we proceed to perform the necessary tests in order to evaluate the distributed mobility management as a solution. This document explains the full design, execution and validationprocesses. Finally all the measurements and statistical data are detailed in order to have an approximation of the services that could achieve the developed network.Ingeniería Telemátic
    • …
    corecore