425,702 research outputs found

    Learning from Noisy Label Distributions

    Full text link
    In this paper, we consider a novel machine learning problem, that is, learning a classifier from noisy label distributions. In this problem, each instance with a feature vector belongs to at least one group. Then, instead of the true label of each instance, we observe the label distribution of the instances associated with a group, where the label distribution is distorted by an unknown noise. Our goals are to (1) estimate the true label of each instance, and (2) learn a classifier that predicts the true label of a new instance. We propose a probabilistic model that considers true label distributions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.Comment: Accepted in ICANN201

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(ϵ)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in ℜd\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(ϵ)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter ϵ\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    Partial Transfer Learning with Selective Adversarial Networks

    Full text link
    Adversarial learning has been successfully embedded into deep networks to learn transferable features, which reduce distribution discrepancy between the source and target domains. Existing domain adversarial networks assume fully shared label space across domains. In the presence of big data, there is strong motivation of transferring both classification and representation models from existing big domains to unknown small domains. This paper introduces partial transfer learning, which relaxes the shared label space assumption to that the target label space is only a subspace of the source label space. Previous methods typically match the whole source domain to the target domain, which are prone to negative transfer for the partial transfer problem. We present Selective Adversarial Network (SAN), which simultaneously circumvents negative transfer by selecting out the outlier source classes and promotes positive transfer by maximally matching the data distributions in the shared label space. Experiments demonstrate that our models exceed state-of-the-art results for partial transfer learning tasks on several benchmark datasets
    • …
    corecore