20,018 research outputs found

    A CMOS-Based Lab-on-Chip Array for Combined Magnetic Manipulation and Opto-Chemical Sensing

    Get PDF
    Accepted versio

    A 3D mammalian cell separator biochip

    Get PDF

    Creating tissue on chip constructs in microtitre plates for drug discovery

    Get PDF
    We report upon a novel coplanar dielectrophoresis (DEP) based cell patterning system for generating transferrable hepatic cell constructs, resembling a liver-lobule, in culture. The use of paper reinforced gel substrates provided sufficient strength to enable these constructs to be transfered into 96-well plates for long term functional studies, including in the future, drug development studies. Experimental results showed that hepatic cells formed DEP field-induced structures corresponding to an array of lobule-mimetic patterns. Hepatic viability was observed over a period of 3 days by the use of a fluorescent cell staining technique, whilst the liver specific functionality of albumin secretion showed a significant enhancement due to the layer patterning of cell lines (HepG2/C3A), compared to 2D patterned cells and un-patterned control. This “build and transfer” concept could, in future, also be adapted for the layer-by-layer construction of organs-on-chip in microtitre formats

    Optically-controlled platforms for transfection and single- and sub-cellular surgery

    Get PDF
    Improving the resolution of biological research to the single- or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual, unpredictable failures or mutations in individual cells can lead to serious downstream conditions across the whole organism. The traditional tools of biochemistry struggle to observe such processes: the vast majority are based upon ensemble approaches analysing the properties of bulk populations, which means that the detail about individual constituents is lost. What are required, then, are tools with the precision and resolution to probe and dissect cells at the single-micron scale: the scale of the individual organelles and structures that control their function. In this review, we highlight the use of highly-focused laser beams to create systems providing precise control and specificity at the single cell or even single micron level. The intense focal points generated can directly interact with cells and cell membranes, which in conjunction with related modalities such as optical trapping provide a broad platform for the development of single and sub-cellular surgery approaches. These highly tuneable tools have demonstrated delivery or removal of material from cells of interest, but can simultaneously excite fluorescent probes for imaging purposes or plasmonic structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics researc

    Integrating microfluidic generation, handling and analysis of biomimetic giant unilamellar vesicles

    Get PDF
    The key roles played by phospholipids in many cellular processes, has led to the development of model systems, to explore both lipid–lipid and lipid–peptide interactions. Biomimetic giant unilamellar vesicles represent close facsimiles of in vivo cellular membranes, although currently their widespread use in research is hindered by difficulties involving their integration into high-throughput techniques, for exploring membrane biology intensively in situ. This paper presents an integrated microfluidic device for the production, manipulation and high-throughput analysis of giant unilamellar vesicles. Its utility is demonstrated by exploring the lipid interaction dynamics of the pore-forming antimicrobial peptide melittin, assessed through the release of fluorescent dyes from within biomimetic vesicles, with membrane compositions similar to mammalian plasma membranes

    3-dimensional electrode patterning within a microfluidic channel using metal ion implantation

    Get PDF
    The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we utilize an ion-implantation process to pattern 3D electrodes within a fluidic channel made of polydimethylsiloxane (PDMS). Electrode structuring within the channel is achieved by ion implantation at a 40° angle with a metal shadow mask. The advantages of three-dimensional structuring of electrodes within a fluidic channel over traditional planar electrode designs are discussed. Two possible applications are presented: asymmetric particles can be aligned in any of the three axial dimensions with electro-orientation; colloidal focusing and concentration within a fluidic channel can be achieved through dielectrophoresis. Demonstrations are shown with E. coli, a rod shaped bacteria, and indicate the potential that ion-implanted microfluidic channels have for manipulations in the context of lab-on-a-chip devices
    corecore