1,650,255 research outputs found

    Detection of Ly\beta auto-correlations and Ly\alpha-Ly\beta cross-correlations in BOSS Data Release 9

    Full text link
    The Lyman-β\beta forest refers to a region in the spectra of distant quasars that lies between the rest-frame Lyman-β\beta and Lyman-γ\gamma emissions. The forest in this region is dominated by a combination of absorption due to resonant Lyα\alpha and Lyβ\beta scattering. When considering the 1D Lyβ\beta forest in addition to the 1D Lyα\alpha forest, the full statistical description of the data requires four 1D power spectra: Lyα\alpha and Lyβ\beta auto-power spectra and the Lyα\alpha-Lyβ\beta real and imaginary cross-power spectra. We describe how these can be measured using an optimal quadratic estimator that naturally disentangles Lyα\alpha and Lyβ\beta contributions. Using a sample of approximately 60,000 quasar sight-lines from the BOSS Data Release 9, we make the measurement of the one-dimensional power spectrum of fluctuations due to the Lyβ\beta resonant scattering. While we have not corrected our measurements for resolution damping of the power and other systematic effects carefully enough to use them for cosmological constraints, we can robustly conclude the following: i) Lyβ\beta power spectrum and Lyα\alpha-Lyβ\beta cross spectra are detected with high statistical significance; ii) the cross-correlation coefficient is 1\approx 1 on large scales; iii) the Lyβ\beta measurements are contaminated by the associated OVI absorption, which is analogous to the SiIII contamination of the Lyα\alpha forest. Measurements of the Lyβ\beta forest will allow extension of the usable path-length for the Lyα\alpha measurements while allowing a better understanding of the physics of intergalactic medium and thus more robust cosmological constraints.Comment: 26 pages, 10 figures; matches version accepted by JCA

    Lyα\alpha profile, dust, and prediction of Lyα\alpha escape fraction in Green Pea Galaxies

    Full text link
    We studied Lyman-α\alpha (Lyα\alpha) escape in a statistical sample of 43 Green Peas with HST/COS Lyα\alpha spectra. Green Peas are nearby star-forming galaxies with strong [OIII]λ\lambda5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about 2/3 of Green Peas are strong Lyα\alpha line emitters with rest-frame Lyα\alpha equivalent width >20>20 \AA. The Lyα\alpha profiles of Green Peas are diverse. The Lyα\alpha escape fraction, defined as the ratio of observed Lyα\alpha flux to intrinsic Lyα\alpha flux, shows anti-correlations with a few Lyα\alpha kinematic features -- both the blue peak and red peak velocities, the peak separations, and FWHM of the red portion of the Lyα\alpha profile. Using properties measured from SDSS optical spectra, we found many correlations -- Lyα\alpha escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [OIII]/[OII] ratio. We fit their Lyα\alpha profiles with the HI shell radiative transfer model and found Lyα\alpha escape fraction anti-correlates with the best-fit NHIN_{HI}. Finally, we fit an empirical linear relation to predict Lyα\alpha escape fraction from the dust extinction and Lyα\alpha red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of IGM scatterings from Lyα\alpha escape and to probe the IGM optical depth along the line of sight of each z>7z>7 Lyα\alpha emission line galaxy in the JWST era.Comment: 15 pages, 11 figures, 3 tables, machine-readable tables included. ApJ in-pres

    Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents?

    Get PDF
    Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We find that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) \propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    A new model framework for circumgalactic Lyα\alpha radiative transfer constrained by galaxy-Lyα\alpha forest clustering

    Get PDF
    We present a new perturbative approach to "constrained Lyα\alpha radiative transfer'" (RT) through the circum- and inter-galactic medium (CGM and IGM). We constrain the HI content and kinematics of the CGM and IGM in a physically motivated model, using the galaxy-Lyα\alpha forest clustering data from spectroscopic galaxy surveys in QSO fields at z23z\sim2-3. This enables us to quantify the impact of the CGM/IGM on Lyα\alpha emission in an observationally constrained, realistic cosmological environment. Our model predicts that the CGM and IGM at these redshifts transmit 80 %\approx80~\% of Lyα\alpha photons after having escaped from galaxies. This implies that while the inter-stellar medium primarily regulates Lyα\alpha escape, the CGM has a non-negligible impact on the observed Lyα\alpha line properties and the inferred Lyα\alpha escape fraction, even at z23z\sim 2-3. Lyα\alpha scattering in the CGM and IGM further introduces an environmental dependence in the (apparent) Lyα\alpha escape fraction, and the observed population of Lyα\alpha emitting galaxies: the CGM/IGM more strongly suppresses direct Lyα\alpha emission from galaxies in overdense regions in the Universe, and redistributes this emission into brighter Lyα\alpha haloes. The resulting mean surface brightness profile of the Lyα\alpha haloes is generally found to be a power-law r2.4\propto r^{-2.4}. Although our model still contains arbitrariness, our results demonstrate how (integral field) spectroscopic surveys of galaxies in QSO fields constrain circumgalactic Lyα\alpha RT, and we discuss the potential of these models for studying CGM physics and cosmology.Comment: 20 pages, 14 figures, the version accepted in MNRA

    Constraining Lyman-alpha spatial offsets at 3<z<5.53<z<5.5 from VANDELS slit spectroscopy

    Get PDF
    We constrain the distribution of spatially offset Lyman-alpha emission (Lyα\alpha) relative to rest-frame ultraviolet emission in 300\sim300 high redshift (3<z<5.53<z<5.5) Lyman-break galaxies (LBGs) exhibiting Lyα\alpha emission from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (0.2 deg2{\simeq0.2}~\mathrm{deg}^2 total). Because slit spectroscopy compresses two-dimensional spatial information into one spatial dimension, we use Bayesian inference to recover the underlying Lyα\alpha spatial offset distribution. We model the distribution using a 2D circular Gaussian, defined by a single parameter σr,Lyα\sigma_{r,\mathrm{Ly}\alpha}, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample (3<z<5.53<z<5.5), we find σr,Lyα=1.700.08+0.09\sigma_{r,\mathrm{Ly}\alpha}=1.70^{+0.09}_{-0.08} kpc (68%68\% conf.), corresponding to 0.25\sim0.25 arcsec at z=4.5\langle z\rangle=4.5. We also find that σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} decreases significantly with redshift. Because Lyα\alpha spatial offsets can cause slit-losses, the decrease in σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} with redshift can partially explain the increase in the fraction of Lyα\alpha emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} continues to decrease into the reionization epoch, then the decrease in Lyα\alpha transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the IGM, slit losses may explain some of the drop in Lyα\alpha transmission observed at z>6z>6. Spatially resolved observations of Lyα\alpha and UV continuum at 6<z<86<z<8 are needed to settle the issue.Comment: Submitted to MNRA

    The Lyman Alpha Reference Sample. VIII. Characterizing Lyman-Alpha Scattering in Nearby Galaxies

    Full text link
    We examine the dust geometry and Ly{\alpha} scattering in the galaxies of the Lyman Alpha Reference Sample (LARS), a set of 14 nearby (0.02 < zz < 0.2) Ly{\alpha} emitting and starbursting systems with Hubble Space Telescope Ly{\alpha}, H{\alpha}, and H{\beta} imaging. We find that the global dust properties determined by line ratios are consistent with other studies, with some of the LARS galaxies exhibiting clumpy dust media while others of them show significantly lower Ly{\alpha} emission compared to their Balmer decrement. With the LARS imaging, we present Ly{\alpha}/H{\alpha} and H{\alpha}/H{\beta} maps with spatial resolutions as low as \sim 40 pc, and use these data to show that in most galaxies, the dust geometry is best modeled by three distinct regions: a central core where dust acts as a screen, an annulus where dust is distributed in clumps, and an outer envelope where Ly{\alpha} photons only scatter. We show that the dust that affects the escape of Ly{\alpha} is more restricted to the galaxies' central regions, while the larger Ly{\alpha} halos are generated by scattering at large radii. We present an empirical modeling technique to quantify how much Ly{\alpha} scatters in the halo, and find that this "characteristic" scattering distance correlates with the measured size of the Ly{\alpha} halo. We note that there exists a slight anti-correlation between the scattering distance of Ly{\alpha} and global dust properties.Comment: 32 pages, 51 figures, accepted to Ap

    The VANDELS survey: A strong correlation between Lyα\alpha equivalent width and stellar metallicity at 3z5\mathbf{3\leq z \leq 5}

    Get PDF
    We present the results of a new study investigating the relationship between observed Lyα\alpha equivalent width (WλW_{\lambda}(Lyα\alpha)) and the metallicity of the ionizing stellar population (ZZ_{\star}) for a sample of 768768 star-forming galaxies at 3z53 \leq z \leq 5 drawn from the VANDELS survey. Dividing our sample into quartiles of rest-frame WλW_{\lambda}(Lyα\alpha) across the range -58 \unicode{xC5} \lesssim WλW_{\lambda}(Lyα\alpha) \lesssim 110 \unicode{xC5} we determine ZZ_{\star} from full spectral fitting of composite far-ultraviolet (FUV) spectra and find a clear anti-correlation between WλW_{\lambda}(Lyα\alpha) and ZZ_{\star}. Our results indicate that ZZ_{\star} decreases by a factor 3\gtrsim 3 between the lowest WλW_{\lambda}(Lyα\alpha) quartile (\langleWλW_{\lambda}(Lyα\alpha)\rangle=-18\unicode{xC5}) and the highest WλW_{\lambda}(Lyα\alpha) quartile (\langleWλW_{\lambda}(Lyα\alpha)\rangle=24\unicode{xC5}). Similarly, galaxies typically defined as Lyman Alpha Emitters (LAEs; WλW_{\lambda}(Lyα\alpha) >20\unicode{xC5}) are, on average, metal poor with respect to the non-LAE galaxy population (WλW_{\lambda}(Lyα\alpha) \leq20\unicode{xC5}) with ZZ_{\star}nonLAE2×_{\rm{non-LAE}}\gtrsim 2 \times ZZ_{\star}LAE_{\rm{LAE}}. Finally, based on the best-fitting stellar models, we estimate that the increasing strength of the stellar ionizing spectrum towards lower ZZ_{\star} is responsible for 1525%\simeq 15-25\% of the observed variation in WλW_{\lambda}(Lyα\alpha) across our sample, with the remaining contribution (7585%\simeq 75-85\%) being due to a decrease in the HI/dust covering fractions in low ZZ_{\star} galaxies.Comment: 10 pages, 6 figures, MNRAS accepte
    corecore