5 research outputs found

    Securing Systems with Scarce Entropy: LWE-Based Lossless Computational Fuzzy Extractor for the IoT

    Get PDF
    With the advent of the Internet of Things, lightweight devices necessitate secure and cost-efficient key storage. Since traditional secure key storage is expensive, novel solutions have been developed based on the idea of deriving the key from noisy entropy sources. Such sources when combined with fuzzy extractors allow cryptographically strong key derivation. Information theoretic fuzzy extractors require large amounts of input entropy to account for entropy loss in the key extraction process. It has been shown by Fuller \textit{et al.}~(ASIACRYPT\u2713) that the entropy loss can be reduced if the requirement is relaxed to computational security based on the hardness of the Learning with Errors problem. Using this computational fuzzy extractor, we show how to construct a device-server authentication system providing outsider chosen perturbation security and pre-application robustness. We present the first implementation of a \emph{lossless} computational fuzzy extractor where the entropy of the source equals the entropy of the key on a constrained device. The implementation needs only 1.45KB of SRAM and 9.8KB of Flash memory on an 8-bit microcontroller. Furthermore, we also show how a device-server authentication system can be constructed and efficiently implemented in our system. We compare our implementation to existing work in terms of security, while achieving no entropy loss

    Multi-factor Physical Layer Security Authentication in Short Blocklength Communication

    Full text link
    Lightweight and low latency security schemes at the physical layer that have recently attracted a lot of attention include: (i) physical unclonable functions (PUFs), (ii) localization based authentication, and, (iii) secret key generation (SKG) from wireless fading coefficients. In this paper, we focus on short blocklengths and propose a fast, privacy preserving, multi-factor authentication protocol that uniquely combines PUFs, proximity estimation and SKG. We focus on delay constrained applications and demonstrate the performance of the SKG scheme in the short blocklength by providing a numerical comparison of three families of channel codes, including half rate low density parity check codes (LDPC), Bose Chaudhuri Hocquenghem (BCH), and, Polar Slepian Wolf codes for n=512, 1024. The SKG keys are incorporated in a zero-round-trip-time resumption protocol for fast re-authentication. All schemes of the proposed mutual authentication protocol are shown to be secure through formal proofs using Burrows, Abadi and Needham (BAN) and Mao and Boyd (MB) logic as well as the Tamarin-prover

    Physical layer security for IoT applications

    Get PDF
    The increasing demands for Internet of things (IoT) applications and the tremendous increase in the volume of IoT generated data bring novel challenges for the fifth generation (5G) network. Verticals such as e-Health, vehicle to everything (V2X) and unmanned aerial vehicles (UAVs) require solutions that can guarantee low latency, energy efficiency,massive connectivity, and high reliability. In particular, finding strong security mechanisms that satisfy the above is of central importance for bringing the IoT to life. In this regards, employing physical layer security (PLS) methods could be greatly beneficial for IoT networks. While current security solutions rely on computational complexity, PLS is based on information theoretic proofs. By removing the need for computational power, PLS is ideally suited for resource constrained devices. In detail, PLS can ensure security using the inherit randomness already present in the physical channel. Promising schemes from the physical layer include physical unclonable functions (PUFs), which are seen as the hardware fingerprint of a device, and secret key generation (SKG) from wireless fading coefficients, which provide the wireless fingerprint of the communication channel between devices. The present thesis develops several PLS-based techniques that pave the way for a new breed of latency-aware, lightweight, security protocols. In particular, the work proposes: i) a fast multi-factor authentication solution with verified security properties based on PUFs, proximity detection and SKG; ii) an authenticated encryption SKG approach that interweaves data transmission and key generation; and, iii) a set of countermeasures to man-in-the-middle and jamming attacks. Overall, PLS solutions show promising performance, especially in the context of IoT applications, therefore, the advances in this thesis should be considered for beyond-5G networks

    Actas de las VI Jornadas Nacionales (JNIC2021 LIVE)

    Get PDF
    Estas jornadas se han convertido en un foro de encuentro de los actores más relevantes en el ámbito de la ciberseguridad en España. En ellas, no sólo se presentan algunos de los trabajos científicos punteros en las diversas áreas de ciberseguridad, sino que se presta especial atención a la formación e innovación educativa en materia de ciberseguridad, y también a la conexión con la industria, a través de propuestas de transferencia de tecnología. Tanto es así que, este año se presentan en el Programa de Transferencia algunas modificaciones sobre su funcionamiento y desarrollo que han sido diseñadas con la intención de mejorarlo y hacerlo más valioso para toda la comunidad investigadora en ciberseguridad

    Securing Systems With Indispensable Entropy: LWE-Based Lossless Computational Fuzzy Extractor for the Internet of Things

    No full text
    corecore