1,013 research outputs found

    Left-ventricular epi- and endocardium extraction from 3D ultrasound images using an automatically constructed 3D ASM

    Get PDF
    © 2014 Taylor & Francis.In this paper, we propose an automatic method for constructing an active shape model (ASM) to segment the complete cardiac left ventricle in 3D ultrasound (3DUS) images, which avoids costly manual landmarking. The automatic construction of the ASM has already been addressed in the literature; however, the direct application of these methods to 3DUS is hampered by a high level of noise and artefacts. Therefore, we propose to construct the ASM by fusing the multidetector computed tomography data, to learn the shape, with the artificially generated 3DUS, in order to learn the neighbourhood of the boundaries. Our artificial images were generated by two approaches: a faster one that does not take into account the geometry of the transducer, and a more comprehensive one, implemented in Field II toolbox. The segmentation accuracy of our ASM was evaluated on 20 patients with left-ventricular asynchrony, demonstrating plausibility of the approach

    Speckle Detection in Echocardiographic Images

    Get PDF

    Lv volume quantification via spatiotemporal analysis of real-time 3-d echocardiography

    Get PDF
    Abstract—This paper presents a method of four-dimensional (4-D) (3-D + Time) space–frequency analysis for directional denoising and enhancement of real-time three-dimensional (RT3D) ultrasound and quantitative measures in diagnostic cardiac ultrasound. Expansion of echocardiographic volumes is performed with complex exponential wavelet-like basis functions called brushlets. These functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented harmonics, which are invariant to intensity and contrast range. Deformable-model segmentation is carried out on denoised data after thresholding of transform coefficients. This process attenuates speckle noise while preserving cardiac structure location. The superiority of 4-D over 3-D analysis for decorrelating additive white noise and multiplicative speckle noise on a 4-D phantom volume expanding in time is demonstrated. Quantitative validation, computed for contours and volumes, is performed on in vitro balloon phantoms. Clinical applications of this spaciotemporal analysis tool are reported for six patient cases providing measures of left ventricular volumes and ejection fraction. Index Terms—Echocardiography, LV volume, spaciotemporal analysis, speckle denoising. I

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Three-dimensional myocardial strain estimation from volumetric ultrasound: experimental validation in an animal model

    Get PDF
    Although real-time three-dimensional echocardiography has the potential to allow for more accurate assessment of global and regional ventricular dynamics compared to the more traditional two-dimensional ultrasound examinations, it still requires rigorous testing and validation against other accepted techniques should it breakthrough as a standard examination in routine clinical practice. Very few studies have looked at a validation of regional functional indices in an in-vivo context. The aim of the present study therefore was to validate a previously proposed 3D strain estimation-method based on elastic registration of subsequent volumes on a segmental level in an animal model. Volumetric images were acquired with a GE Vivid7 ultrasound system in five open-chest sheep instrumented with ultrasonic microcrystals. Radial (epsilon(RR)), longitudinal (epsilon(LL)) and circumferential strain (epsilon(CC)) were estimated during four stages: at rest, during esmolol and dobutamine infusion, and during acute ischemia. Moderate correlations for epsilon(LL) (r=0.63; p<0.01) and epsilon(CC) (r=0.60; p=0.01) were obtained, whereas no significant radial correlation was found. These findings are comparable to the performance of the current state-of-the-art commercial 3D speckle tracking methods

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area
    corecore