85 research outputs found

    Temporal Logics on Words with Multiple Data Values

    Get PDF
    The paper proposes and studies temporal logics for attributed words, that is, data words with a (finite) set of (attribute,value)-pairs at each position. It considers a basic logic which is a semantical fragment of the logic LTLdownarrow1LTL^downarrow_1 of Demri and Lazic with operators for navigation into the future and the past. By reduction to the emptiness problem for data automata it is shown that this basic logic is decidable. Whereas the basic logic only allows navigation to positions where a fixed data value occurs, extensions are studied that also allow navigation to positions with different data values. Besides some undecidable results it is shown that the extension by a certain UNTIL-operator with an inequality target condition remains decidable

    A Linear-Time Nominal ?-Calculus with Name Allocation

    Get PDF
    Logics and automata models for languages over infinite alphabets, such as Freeze LTL and register automata, serve the verification of processes or documents with data. They relate tightly to formalisms over nominal sets, such as nondetermininistic orbit-finite automata (NOFAs), where names play the role of data. Reasoning problems in such formalisms tend to be computationally hard. Name-binding nominal automata models such as {regular nondeterministic nominal automata (RNNAs)} have been shown to be computationally more tractable. In the present paper, we introduce a linear-time fixpoint logic Bar-?TL} for finite words over an infinite alphabet, which features full negation and freeze quantification via name binding. We show by a nontrivial reduction to extended regular nondeterministic nominal automata that even though Bar-?TL} allows unrestricted nondeterminism and unboundedly many registers, model checking Bar-?TL} over RNNAs and satisfiability checking both have elementary complexity. For example, model checking is in 2ExpSpace, more precisely in parametrized ExpSpace, effectively with the number of registers as the parameter

    Alternating register automata on finite words and trees

    Get PDF
    We study alternating register automata on data words and data trees in relation to logics. A data word (resp. data tree) is a word (resp. tree) whose every position carries a label from a finite alphabet and a data value from an infinite domain. We investigate one-way automata with alternating control over data words or trees, with one register for storing data and comparing them for equality. This is a continuation of the study started by Demri, Lazic and Jurdzinski. From the standpoint of register automata models, this work aims at two objectives: (1) simplifying the existent decidability proofs for the emptiness problem for alternating register automata; and (2) exhibiting decidable extensions for these models. From the logical perspective, we show that (a) in the case of data words, satisfiability of LTL with one register and quantification over data values is decidable; and (b) the satisfiability problem for the so-called forward fragment of XPath on XML documents is decidable, even in the presence of DTDs and even of key constraints. The decidability is obtained through a reduction to the automata model introduced. This fragment contains the child, descendant, next-sibling and following-sibling axes, as well as data equality and inequality tests

    Relating timed and register automata

    Get PDF
    Timed automata and register automata are well-known models of computation over timed and data words respectively. The former has clocks that allow to test the lapse of time between two events, whilst the latter includes registers that can store data values for later comparison. Although these two models behave in appearance differently, several decision problems have the same (un)decidability and complexity results for both models. As a prominent example, emptiness is decidable for alternating automata with one clock or register, both with non-primitive recursive complexity. This is not by chance. This work confirms that there is indeed a tight relationship between the two models. We show that a run of a timed automaton can be simulated by a register automaton, and conversely that a run of a register automaton can be simulated by a timed automaton. Our results allow to transfer complexity and decidability results back and forth between these two kinds of models. We justify the usefulness of these reductions by obtaining new results on register automata.Comment: In Proceedings EXPRESS'10, arXiv:1011.601
    corecore