30,232 research outputs found

    LTE-advanced, and the way forward

    Get PDF
    Long Term Evolution Advanced (LTE-Advanced) is the next step in LTE evolution and allows operators to improve network performance and service capabilities through smooth deployment of new techniques and technologies. LTE-Advanced uses some new features on top of the existing LTE standards and protocols to provide better user experience and higher throughputs. Some of the most significant features introduced in LTE-Advanced are carrier aggregation, enhancements in heterogeneous networks, coordinated multi-point transmission and reception, enhanced Multiple Input Multiple Output (MIMO) usage and deployment of relay nodes in the radio network. This paper presents an overview of the key features and functionalities of the LTE-Advanced radio access network supported by simulation results, and provides discussion on the current challenges, roadmap and the way forward from LTE-Advanced toward future mobile communications systems

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    Fronthaul evolution: From CPRI to Ethernet

    Get PDF
    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved
    • 

    corecore