1,256 research outputs found

    Performance Analysis of Coexistence Schemes for LTE in Unlicensed Bands

    Get PDF
    LTE in the unlicensed spectrum, is becoming a popular area of research. Since LTE-Unlicensed (LTE-U) provides subscribers with higher-quality mobile voice, and video experience in high-traffic or low-signal locations, a fair coexistence mechanism with other networks, like Wi-Fi is essential. In this thesis, we propose two coexistence mechanisms that could be employed to ensure a fair channel access. First, we consider coexistence mechanism fundamentals, and then downlink system performance of two coexistence mechanisms are analyzed for multi-operator LTE-Unlicensed (LTE-U) deployments with different simulation scenarios, using NS-3. First we introduce the most trustworthy coexistence mechanism, and then a high-performance coexistence scenario is provided. We conclude that Licensed Assisted Access (LAA) can coexist with Wi-Fi without impacting Wi-Fi more than an equivalent Wi-Fi network. In the second part, uplink performance evaluation of LTE in licensed spectrum is also demonstrated

    On placement and efficient resource allocation of LAA/LTE-U base stations in HetNet

    Get PDF
    LTE operation in unlicensed spectrum is considered as a promising solution to meet the increase in user data demand. Licensed Assisted Access (LAA), and duty cycled LTE-U are two options for LTE to operate in the unlicensed band for fair sharing of unlicensed spectrum with IEEE 802.11 (Wi-Fi). Due to restriction on the transmission power in the unlicensed band, LAA/LTE-U Base Stations (BSs) will get deployed mostly inside residential and office buildings to provide high data rates for indoor User Equipments (UEs). In an indoor scenario, walls and other obstacles in the communication path along with co-tier and cross-tier interferences decrease the Signal-to-Interference plus Noise Ratio (SINR) significantly which results in throughput decrease. Hence, an optimal placement of LAA BSs is essential. As the available bandwidth in the unlicensed spectrum is more compared to the licensed spectrum, an efficient resource allocation is also necessary for ensuring minimum throughput for the indoor UEs. In this paper, our goal is to find the optimal number of LAA/LTE-U BSs with minimum throughput guarantee inside the building using licensed and unlicensed bands. To do this, we formulate an optimization model (MinLAA) for LAA BSs placement which is Mixed Integer Non-Linear Programming (MINLP) problem. So, we propose a heuristic algorithm to find the minimum number of LAA/LTE-U BSs such that all the users inside the building get minimum guaranteed throughput

    A Survey and Comparison of Device-to-Device Architecture Using LTE Unlicensed Band

    Full text link
    © 2017 IEEE. Due to the rapid increase in data traffic, one of the solutions provided by mobile operators is to operate Long Term Evolution (LTE) in the unlicensed 5GHz band, as the licensed spectrum is becoming scarce. Mobile operators can expand their network capacity by operating LTE in the unlicensed band at lower cost when compared with using other licensed bands. Device to Device (D2D) communication, proven to be another effective way to enhance the capacity of a network, enables direct data exchange of localized traffic of users in proximity. Applying D2D communication to LTE unlicensed 5GHz band will further improve the network performance and user experience. In this article, we will discuss the new type of solutions that have been proposed for LTE operating in an unlicensed 5GHz band that includes; LTE-Unlicensed (LTE-U), LTE-License Assisted Access (LTE-LAA), LTE WiFi Link Aggregation (LWA), and MuLTEfire. We will discuss the important features along with their advantages and disadvantages and compare these technologies as well. We simulate LTE-LAA, LWA and MuLTEfire technologies in the presence of Wi-Fi hotspot and compare their results. Furthermore, we apply D2D communication to these technologies and from the results we conclude that MuLTEfire can increase the throughput drastically but network saturates quickly. Whereas, applying D2D communication with LWA is beneficial for a scalable network as it will not only increase the network throughput but will increase the network capacity as well

    The Impact on Full Duplex D2D Communication of Different LTE Transmission Techniques

    Full text link
    © 2017 IEEE. To augment capacity of spectrum limited cellular systems, 3GPP proposed Licensed Assisted Access (LAA-LTE) while efforts are underway to standardize the standalone MulteFire (a small cell standalone version of LTE). LAA is expected to boost capacity of LTE via unlicensed spectrum (5GHz). On the other hand, recent advances in Self Interference Suppression (SIS) techniques allow radios to transmit and receive simultaneously on the same channel (i.e., in-band Full-Duplex, FD). As part of future wireless networks, Device-to-device (D2D) communications would find its great potential through this FD capability. However, due to high induced aggregate interference from FD and its impact on medium access probability, the rigorous and critical analysis is needed to find an optimum trade-off between performance efficiency and overheads. Using stochastic geometry and the random graph theory, in this article, we analyze the impact of different LTE network paradigms with HD/FD D2D devices. Moreover, the impact of state- of-the-art coexistence techniques (discontinuous transmission and listen-before-talk) recommended for LTE in unlicensed spectrum over HD/FD D2D network is also discussed. The analysis is supported with extensive simulation results that reveal insights of the coexistence mechanism efficiency employed by LTE, the impact of SIS and the cost of FD operation in D2D

    A Q-learning scheme for fair coexistence between LTE and Wi-Fi in unlicensed spectrum

    Get PDF
    During the last years, the growth of wireless traffic pushed the wireless community to search for solutions that can assist in a more efficient management of the spectrum. Toward this direction, the operation of long term evolution (LTE) in unlicensed spectrum (LTE-U) has been proposed. Targeting a global solution that respects the regional regulations worldwide, 3GPP has published the LTE licensed assisted access (LAA) standard. According to LTE LAA, a listen before talk (LBT) procedure must precede any LTE transmission burst in the unlicensed spectrum. However, the proposed standard may cause coexistence issues between LTE and Wi-Fi, especially in the case that the latter does not use frame aggregation. Toward the provision of a balanced channel access, we have proposed mLTE-U that is an adaptive LTE LBT scheme. According to mLTE-U, LTE uses a variable transmission opportunity (TXOP), followed by a variable muting period. This muting period can be exploited by co-located Wi-Fi networks to gain access to the medium. In this paper, the system model of the mLTE-U scheme in coexistence with Wi-Fi is studied. In addition, mLTE-U is enhanced with a Q-learning technique that is used for autonomous selection of the appropriate combinations of TXOP and muting period that can provide fair coexistence between co-located mLTE-U and Wi-Fi networks. Simulation results showcase the performance of the proposed model and reveal the benefit of using Q-learning for self-adaptation of mLTE-U to the changes of the dynamic wireless environment, toward fair coexistence with Wi-Fi. Finally, the Q-learning mechanism is compared with conventional selection schemes showing the superior performance of the proposed model over less complex mechanisms

    LTE/Wi-Fi Coexistence in Unlicensed Bands Based on Dynamic Transmission Opportunity

    Get PDF
    With the rapid proliferation of smart devices, the demand for more licensed spectrum bands arises. Due to the scarcity of the licensed spectrum, the 3rd Generation Partnership (3GPP) has recently deployed Long Term Evolution (LTE) networks using the Licensed Assisted Access (LAA) scheme over unlicensed bands. On the other hand, the Wi-Fi technology is the main technology that operates over these unlicensed bands. Thus, the major concern is to attain a fair coexistence mechanism between these coexisting technologies (i.e., LTE and Wi- Fi). In this paper, we focus on the downlink scenario under different traffic loads to study the effect of the maximum Transmission Opportunity (TxOP) period for LTE-LAA in the performance of LTE-LAA/Wi-Fi coexistence. A dynamic TxOP period method is proposed to provide better fairness and higher total aggregated throughputs for the coexisting networks based on the Hybrid Automatic Repeat Request (HARQ) reports. The novelty of this work is that the existing HARQ reports are exploited to update the TxOP period for LAA in a dynamic manner. We show that the TxOP period plays a key role in the coexistence between LTE-LAA and Wi-Fi networks over unlicensed bands. The simulation results show that the proposed dynamic TxOP method improves the fairness and achieves higher total aggregated throughputs for both coexisting networks as compared to the static TxOP period used by the standard Category 4 LBT (Cat 4 LBT) method defined by 3GPP

    FAIR SHARING of CHANNEL RESOURCES in the COEXISTENCE of HETEROGENEOUS WIRELESS NETWORKS

    Get PDF
    Increasing spectrum resources in cellular networks are always needed to carry the exponential data traffic growth in wireless cellular networks. Limited spectrum resources in the licensed band have necessitated Long-Term Evolution (LTE) to explore available unlicensed spectrum where an incumbent WiFi system already exists. With the deployment of Licensed Assisted Access (LAA) that utilizes Listen Before Talk (LBT) for channel access in the unlicensed spectrum along with an incumbent WiFi, the coexistence of LAA and WiFi with acceptable fairness is a major challenge. In this work, we address the issues of licensed assisted access coexisting with incumbent WiFi in an unlicensed spectrum and provide solutions to dynamically tune system parameters of LAA stations to achieve maximum total throughput from the overall system taking into account fair allocation of throughput and airtime across different networks and stations. One major system parameter we study is the contention window size for back-off. Using the method of coupled Markov Chain, we show how an inherent trade-off between throughput and airtime fairness can be managed by adjusting the CW size of LAA. For single-channel, we show how coexistence with WiFi can be managed better with LAA-Cat3 than LAA-Cat4 when total throughput and fairness are to be taken into account. For multi-carrier sensing, we establish better coexistence by optimizing contention window sizes of each LAA station separately using an assignment technique based on a genetic algorithm. We extend our work into dual-carrier aggregation where some stations have the ability to combine two independent channels into a single aggregated channel to achieve higher performance. We show that in such a dual-carrier aggregation scenario, the distribution of stations (partition) over an individual and aggregated channel, and the system parameters (contention window size and load intensity) could be optimized to ensure fair allocation of resources without affecting the secondary channel too much

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&
    corecore