1,581 research outputs found

    LTE Carrier Aggregation Deployment – From Standardization to Deployment

    Get PDF
    Purpose: The objective of this research was to investigate LTE Carrier Aggregation commercial deployment and how soon it happened after standardization finalization. Because LTE Carrier Aggregation feature was expected to be important feature there is good reason to expect its deployment for real commercial markets.   Theoretical framework: The literature at time when standardization was ongoing predicted and speculated Carrier Aggregation feature as promising deployment selection. However there is room to investigate whether Carrier Aggregation happened shortly after standard specification work finalized.    Design/methodology/approach: Used methodology was to gather network operators’ and equipment manufacturers’ intentions for LTE Carrier Aggregation commercial deployment purposes during and after standardization finalization. Information found from public sources where commercial deployment intentions launched by companies.      Findings: The research showed that after and already before standardization finalized there were immediate intentions for LTE Carrier Aggregation deployment. Commercial trials appeared within one year and real commercial deployments appeared within two years from standardization finalization. That means soon deployments in commercial markets when considering deployment in licensed band.   Research, Practical & Social implications: For future works there could be study why not LTE Carrier Aggregation solutions in unlicensed band was not successful and whether there will be changes when going towards 5G standard related deployments.   Originality/value: This article is an academic contribution for innovation feature commercial deployment in telecommunications industry and investigation whether LTE Carrier Aggregation feature deployment happened as soon as expected

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    Scenario driven requirement engineering for design and deployment of mobile communication networks

    Get PDF
    The numbers of users and usage of mobile data service are increasing dramatically due to the introduction of smartphones and mobile broadband dongles. For the next decade the mobile broadband market is expected to grow and reach a level where the average data consumption per user is orders of magnitude greater than today. For the telecom industry it is a magnificent challenge to design and deploy these s high-capacity wireless networks taking into account limitations in cost, energy and radio spectrum. The objective of this paper is to highlight the need to consider a multitude of scenarios for the requirements, design and deployment of mobile broad band networks. The R&D has for many years been targeting high peak data rates enabled by improved spectral efficiency, adding more spectrum bands, aggregation of frequency bands and offloading to local wireless networks connected via public fixed phones or broadband. However, many of these features driving the technology development are representative for the conditions in US and Western Europe. The wireless networks also need to be designed assuming deployment in regions in the world where both the availability of spectrum as well as the penetration of fixed phones and broadband are limited. --Mobile broadband networks,cost and capacity,spectrum,deployment strategies,telecommunications,management of technology and R&D,economic development of natural resources
    • 

    corecore