73 research outputs found

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure

    A Survey on Malware Detection with Graph Representation Learning

    Full text link
    Malware detection has become a major concern due to the increasing number and complexity of malware. Traditional detection methods based on signatures and heuristics are used for malware detection, but unfortunately, they suffer from poor generalization to unknown attacks and can be easily circumvented using obfuscation techniques. In recent years, Machine Learning (ML) and notably Deep Learning (DL) achieved impressive results in malware detection by learning useful representations from data and have become a solution preferred over traditional methods. More recently, the application of such techniques on graph-structured data has achieved state-of-the-art performance in various domains and demonstrates promising results in learning more robust representations from malware. Yet, no literature review focusing on graph-based deep learning for malware detection exists. In this survey, we provide an in-depth literature review to summarize and unify existing works under the common approaches and architectures. We notably demonstrate that Graph Neural Networks (GNNs) reach competitive results in learning robust embeddings from malware represented as expressive graph structures, leading to an efficient detection by downstream classifiers. This paper also reviews adversarial attacks that are utilized to fool graph-based detection methods. Challenges and future research directions are discussed at the end of the paper.Comment: Preprint, submitted to ACM Computing Surveys on March 2023. For any suggestions or improvements, please contact me directly by e-mai

    Toward Building an Intelligent and Secure Network: An Internet Traffic Forecasting Perspective

    Get PDF
    Internet traffic forecast is a crucial component for the proactive management of self-organizing networks (SON) to ensure better Quality of Service (QoS) and Quality of Experience (QoE). Given the volatile and random nature of traffic data, this forecasting influences strategic development and investment decisions in the Internet Service Provider (ISP) industry. Modern machine learning algorithms have shown potential in dealing with complex Internet traffic prediction tasks, yet challenges persist. This thesis systematically explores these issues over five empirical studies conducted in the past three years, focusing on four key research questions: How do outlier data samples impact prediction accuracy for both short-term and long-term forecasting? How can a denoising mechanism enhance prediction accuracy? How can robust machine learning models be built with limited data? How can out-of-distribution traffic data be used to improve the generalizability of prediction models? Based on extensive experiments, we propose a novel traffic forecast/prediction framework and associated models that integrate outlier management and noise reduction strategies, outperforming traditional machine learning models. Additionally, we suggest a transfer learning-based framework combined with a data augmentation technique to provide robust solutions with smaller datasets. Lastly, we propose a hybrid model with signal decomposition techniques to enhance model generalization for out-of-distribution data samples. We also brought the issue of cyber threats as part of our forecast research, acknowledging their substantial influence on traffic unpredictability and forecasting challenges. Our thesis presents a detailed exploration of cyber-attack detection, employing methods that have been validated using multiple benchmark datasets. Initially, we incorporated ensemble feature selection with ensemble classification to improve DDoS (Distributed Denial-of-Service) attack detection accuracy with minimal false alarms. Our research further introduces a stacking ensemble framework for classifying diverse forms of cyber-attacks. Proceeding further, we proposed a weighted voting mechanism for Android malware detection to secure Mobile Cyber-Physical Systems, which integrates the mobility of various smart devices to exchange information between physical and cyber systems. Lastly, we employed Generative Adversarial Networks for generating flow-based DDoS attacks in Internet of Things environments. By considering the impact of cyber-attacks on traffic volume and their challenges to traffic prediction, our research attempts to bridge the gap between traffic forecasting and cyber security, enhancing proactive management of networks and contributing to resilient and secure internet infrastructure

    Neural malware detection

    Get PDF
    At the heart of today’s malware problem lies theoretically infinite diversity created by metamorphism. The majority of conventional machine learning techniques tackle the problem with the assumptions that a sufficiently large number of training samples exist and that the training set is independent and identically distributed. However, the lack of semantic features combined with the models under these wrong assumptions result largely in overfitting with many false positives against real world samples, resulting in systems being left vulnerable to various adversarial attacks. A key observation is that modern malware authors write a script that automatically generates an arbitrarily large number of diverse samples that share similar characteristics in program logic, which is a very cost-effective way to evade detection with minimum effort. Given that many malware campaigns follow this paradigm of economic malware manufacturing model, the samples within a campaign are likely to share coherent semantic characteristics. This opens up a possibility of one-to-many detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique to the campaign in order to detect these seemingly diverse but identically rooted variants. To address these issues, this dissertation proposes novel deep learning models, including generative static malware outbreak detection model, generative dynamic malware detection model using spatio-temporal isomorphic dynamic features, and instruction cognitive malware detection. A comparative study on metamorphic threats is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over convolutional network with global average pooling is introduced as a fundamental deep learning framework for malware detection, which captures highly complex non-linear metamorphism through translation invariancy and local variation insensitivity. Generative Adversarial Network (GAN) used as a part of the framework enables oneshot training where semantically isomorphic malware campaigns are identified by a single malware instance sampled from the very initial outbreak. This is a major innovation because, to the best of our knowledge, no approach has been found to this challenging training objective against the malware distribution that consists of a large number of very sparse groups artificially driven by arms race between attackers and defenders. In addition, we propose a novel method that extracts instruction cognitive representation from uninterpreted raw binary executables, which can be used for oneto- many malware detection via one-shot training against frequency spectrum of the Transformer’s encoded latent representation. The method works regardless of the presence of diverse malware variations while remaining resilient to adversarial attacks that mostly use random perturbation against raw binaries. Comprehensive performance analyses including mathematical formulations and experimental evaluations are provided, with the proposed deep learning framework for malware detection exhibiting a superior performance over conventional machine learning methods. The methods proposed in this thesis are applicable to a variety of threat environments here artificially formed sparse distributions arise at the cyber battle fronts.Doctor of Philosoph

    Deep Learning for Cyber Security Intrusion Detection: Approaches, Datasets, and Comparative Study

    Get PDF
    The file attached to this record is the author's final peer reviewed version.In this paper, we present a survey of deep learning approaches for cyber security intrusion detection, the datasets used, and a comparative study. Specifically, we provide a review of intrusion detection systems based on deep learning approaches. The dataset plays an important role in intrusion detection, therefore we describe 35 well-known cyber datasets and provide a classification of these datasets into seven categories; namely, network traffic-based dataset, electrical network-based dataset, internet traffic-based dataset, virtual private network-based dataset, android apps-based dataset, IoT traffic-based dataset, and internet-connected devices-based dataset. We analyze seven deep learning models including recurrent neural networks, deep neural networks, restricted Boltzmann machines, deep belief networks, convolutional neural networks, deep Boltzmann machines, and deep autoencoders. For each model, we study the performance in two categories of classification (binary and multiclass) under two new real traffic datasets, namely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. In addition, we use the most important performance indicators, namely, accuracy, false alarm rate, and detection rate for evaluating the efficiency of several methods

    ConvXSS:a deep learning-based smart ICT framework against code injection attacks for HTML5 web applications in sustainable smart city infrastructure

    Get PDF
    In this paper we propose ConvXSS, a novel deep learning approach for the detection of XSS and code injection attacks, followed by context-based sanitization of the malicious code if the model detects any malicious code in the application. Firstly, we briefly discuss XSS and code injection attacks that might pose threat to sustainable smart cities. Along with this, we discuss various approaches proposed previously for the detection and alleviation of these attacks followed by their respective limitations. Then we propose our deep learning model adopting whose novelty is based on the approach followed for Data Pre-Processing. Then we finally propose Context-based Sanitization to replace the malicious part of the code with sanitized code. Numerical experiments conducted on various datasets have shown various results out of which the best model has an accuracy of 99.42%, a precision of 99.81% and a recall of 99.35%. When compared with other state of the art techniques in this domain, our approach shows at par or in the best case, better results in terms of detection speed and accuracy of CSS attacks
    corecore