61 research outputs found

    LSP Setup Arrival Reordering Approach for MPLS-TE Routing

    Get PDF
    International audienceIn this paper, we evaluate a solution based on the preemption mechanism so as to improve performances of distributed Multi-Protocol Label Switching-Traffic Engineering (MPLS-TE) path computation, where requests are handled one by one, in an uncoordinated manner without any knowledge of future and other requests. Our solution is motivated by the considerable impact of the tunnel setup order on the network load and blocking probability. If it is not possible to control this order, in return it is possible, in some cases, to reorder requests using the pre-emption function. After evaluating the impact of the tunnel setup order, we study the use of preemption to reorder Label Switching Path setup, with various algorithms, including Shortest Path First (SPF), Widest Shortest Path (WSP) and Shortest Widest Path (SWP). We show that the preemption is well suited to shortest path based algorithms and the performances in terms of blocking rate are significantly improved

    Recovery modeling in MPLS networks

    Get PDF
    Transmission of QoS based traffic over packet switched network typically requires resource reservation or differentiated treatment to guarantee an acceptable level of performance. But it is also essential to bound the disruption caused by failure of nodes or links for a real time traffic to a limit that is acceptable by the application. In this paper, a simulation platform models the impact of the MPLS recovery/protection schemes on the QoS traffic parameters including disruption time and number of out of order packets arriving at the destination. The simulation considers measures to alleviate drawbacks caused by recovery process

    Combined use of prioritized AIMD and flow-based traffic splitting for robust TCP load balancing

    Get PDF
    Cataloged from PDF version of article.In this thesis, we propose a multi-path TCP load balancing traffic engineering methodology in IP networks. In this architecture, TCP traffic is split at the flow level between the primary and secondary paths in order to prevent the adverse effect of packet reordering on TCP performance occuring in packet-based load balancing schemes. Traffic splitting is done by using a random early rerouting algorithm that controls the queuing delay difference between the two alternative paths. We apply strict priority queuing in order to prevent the knock-on effect that arises when primary and secondary path queues have equal priority. Probe packets are used for getting congestion information from the output queues of links along the paths and AIMD (Additive Increase/Multiplicative Decrease) based rate control using this congestion information is applied to the traffic routed over these paths. We compare two queuing architectures, namely first-in-first-out (FIFO) and strict priority. We show through simulations that strict priority queuing has higher performance, it is relatively more robust than FIFO queuing and it eliminates the knock-on effect. We show that avoiding packet reordering by flow level splitting significantly improves the performance of long flows. The capabilities of ns-2 simulator is improved bu using optimizations in order to apply the simulator to relatively large networks. We show that incorporating a-priori knowledge of the traffic demand matrix into the proposed architecture can further improve its performance in terms of load balancing and byte rejection ratio.Alparslan, OnurM.S

    Equal cost multipath routing in IP networks

    Get PDF
    IP verkkojen palveluntarjoajat ja loppukäyttäjät vaativat yhä tehokkaampia ja parempilaatuisia palveluita, mikä vaatii tuotekehittäjiä tarjoamaan hienostuneempia liikennesuunnittelumenetelmiä verkon optimointia ja hallintaa varten. IS-IS ja OSPF ovat standardiratkaisut hoitamaan reititystä pienissä ja keskisuurissa pakettiverkoissa. Monipolkureititys on melko helppo ja yleispätevä tapa parantaa kuorman balansointia ja nopeaa suojausta tällaisissa yhden polun reititykseen keskittyvissä verkoissa. Tämä diplomityö kirjoitettiin aikana, jolloin monipolkureititys toteutettiin Tellabs-nimisen yrityksen 8600-sarjan reitittimiin. Tärkeimpiä kohtia monipolkureitityksen käyttöönotossa ovat lyhyimmän polun algoritmin muokkaukseen ja reititystaulun toimintaan liittyvät muutokset ohjaustasolla sekä kuormanbalansointialgoritmin toteutus reitittimen edelleenkuljetustasolla. Diplomityön tulokset sekä olemassa oleva kirjallisuus osoittavat, että kuormanbalansointialgoritmilla on suurin vaikutus yhtä hyvien polkujen liikenteen jakautumiseen ja että oikean algoritmin valinta on ratkaisevan tärkeää. Hajakoodaukseen perustuvat algoritmit, jotka pitävät suurimman osan liikennevuoista samalla polulla, ovat dominoivia ratkaisuja nykyisin. Tämän algoritmityypin etuna on helppo toteutettavuus ja kohtuullisen hyvä suorituskyky. Liikenne on jakautunut tasaisesti, kunhan liikennevuoiden lukumäärä on riittävän suuri. Monipolkureititys tarjoaa yksinkertaisen ratkaisun, jota on helppo konfiguroida ja ylläpitää. Suorituskyky on parempi kuin yksipolkureititykseen perustuvat ratkaisut ja se haastaa monimutkaisemmat MPLS ratkaisut. Ainoa huolehdittava asia on linkkien painojen asettaminen sillä tavalla, että riittävästi kuormantasauspolkuja syntyy.Increasing efficiency and quality demands of services from IP network service providers and end users drive developers to offer more and more sophisticated traffic engineering methods for network optimization and control. Intermediate System to Intermediate System and Open Shortest Path First are the standard routing solutions for intra-domain networks. An easy upgrade utilizes Equal Cost Multipath (ECMP) that is one of the most general solutions for IP traffic engineering to increase load balancing and fast protection performance of single path interior gateway protocols. This thesis was written during the implementation process of the ECMP feature of Tellabs 8600 series routers. The most important parts in adoption of ECMP are changes to shortest path first algorithm and routing table modification in the control plane and implementation of load balancing algorithm to the forwarding plane of router. The results of the thesis and existing literature prove, that the load balancing algorithm has the largest affect on traffic distribution of equal cost paths and the selection of the correct algorithm is crucial. Hash-based algorithms, that keep the traffic flows in the same path, are the dominating solutions currently. They provide simple implementation and moderate performance. Traffic is distributed evenly, when the number of flows is large enough. ECMP provides a simple solution that is easy to configure and maintain. It outperforms single path solutions and competes with more complex MPLS solutions. The only thing to take care of is the adjustment of link weights of the network in order to create enough load balancing paths

    Dynamic routing and load balancing in IP-over-WDM networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Multi-layer traffic engineering in optical networks under physical layer impairments

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 153-165.We study Traffic Engineering (TE) in Multiprotocol Label Switching (MPLS)/Wavelength Division Multiplexing (WDM) networks and propose a multi-layer TE method. MPLS provides powerful TE features for IP networks and is widely deployed in backbone networks. WDM can increase the transmission capacity of optical fibers to tremendous amounts, therefore it has been the dominant multiplexing technology used in the optical layer. The proposed multi-layer TE solution facilitates efficient use of network resources where the TE mechanisms in the MPLS and WDM layers coordinate. We consider a static WDM layer and available traffic expectation information. The TE problem arising in the considered scenario is the Virtual Topology Design (VTD) problem, which involves the decision of WDM lightpaths to be established, calculation of MPLS Label Switched Paths (LSPs) on the resulting virtual topology, and calculation of the routes and wavelengths in the physical topology that correspond to the lightpaths in the virtual topology. We assume a daily traffic pattern changing with the time of day and aim to design a static virtual topology that satisfies as much of the offered traffic as possible, over the whole day. In our proposed solution, the multi-layer VTD problem is solved by decomposing it into two sub-problems, each involving in a single layer. The decomposition approach is used in the thesis due to the huge computational burden of the combined solution for real-life networks. The sub-problem in the MPLS layer is the design of the lightpath topology and calculation of the LSP routes on this virtual topology. This problem is known to be NP-complete and finding its optimum solution is possible only for small networks. We propose a Tabu Search based heuristic method to solve two versions of this problem, resource oriented and performance oriented. Integer Linear Programming (ILP) relaxations are also developed for obtaining upper and lower bounds. We show that the gap between the produced solutions and the lower and upper bounds are around 10% and 7% for the resource and performance oriented problems, respectively. Since the actual traffic can show deviations from the expected values, we also developed an MPLS layer online TE method to compensate the instantaneous fluctuations of the traffic flows. In the proposed method, the LSPs are rerouted dynamically using a specially designed cost function. Our numerical studies show that using the designed cost function results in much lower blockings than using commonly used Widest Shortest Path First and Available Shortest Path First approaches in the literature. The corresponding sub-problem of the multi-layer VTD problem in the WDM layer is the Static Lightpath Establishment (SLE) problem. Along with the capacity and wavelength continuity constraints, we also consider the Bit Error Rate (BER) constraints due to physical layer impairments such as attenuation, polarization mode dispersion and switch crosstalk. This problem is NP-complete even without the BER constraints. We propose a heuristic solution method and develop an exact ILP formulation to evaluate the performance of the proposed method for small problem sizes. Our proposed method produces solutions close to the optimum solutions for the cases in which the ILP formulation could be solved to optimality. Then, these solution methods for the single layer sub-problems are combined in a multi-layer TE scheme to solve the VTD problem in both layers jointly. The proposed TE scheme considers the physical layer limitations and optical impairments. This TE scheme can be applied by keeping each layer’s information hidden from the other layer, but our simulations show that it can produce more effective and efficient solutions when the physical layer topology information is shared with the MPLS layer. We also investigate the effect of non-uniform optical components in terms of impairment characteristics. The numerical results show that more traffic can be routed when all the components in the network have moderate impairment characteristics, compared to the case in which some components have better and some have worse impairment characteristics.Şengezer, NamıkPh.D

    Foutbestendige toekomstige internetarchitecturen

    Get PDF
    corecore