82 research outputs found

    Calibration methods for microwave free space measurements

    Get PDF
    In this article calibration methods for the precise, contact-less measurement of the permittivity, permeability or humidity of materials are presented. The free space measurement system principally consists of a pair of focusing horn-lens antennas connected to the ports of a vector network analyzer. Based on the measured scattering parameters, the dielectric material parameters are calculable. Due to systematic errors as e.g. transmission losses of the cables or mismatches of the antennas, a calibration of the measurement setup is necessary. For this purpose calibration methods with calibration standards of equal mechanical lengths are presented. They have the advantage, that the measurement setup can be kept in a fixed position, for example no displacement of the antennas is needed. The presented self-calibration methods have in common that the calibration structures consist of a so-called obstacle network which can be partly unknown. The obstacle can either be realized as a transmissive or a reflective network depending on the chosen method. An increase of the frequency bandwidth is achievable with the reflective realization. The theory of the calibration methods and some experimental results will be presented

    Calibration methods for material measurements

    Get PDF

    Pulsed Free Space Photonic Vector Network Analyzers

    Get PDF
    Terahertz (THz) radiation (0.1–10 THz) has demonstrated great significance in a wide range of interdisciplinary applications due to its unique properties such as the capacity to penetrate optically opaque materials without ionizing effect, superior spatial resolution as compared to the microwave domain for imaging or ability to identify a vast array of molecules using THz fingerprinting. Advancements in generation and detection techniques, as well as the necessities of application-driven research and industry, have created a substantial demand for THz-range devices and components. However, progress in the development of THz components is hampered by a lack of efficient and affordable characterization systems, resulting in limited development in THz science and technology. Vector Network Analyzers (VNAs) are highly sophisticated well-established characterization instruments in the microwave bands, which are now employed in the lower end of the THz spectrum (up to 1.5 THz) using frequency extender modules. These modules are extremely expensive, and due to the implementation of hollow metallic waveguides for their configuration, they are narrowband, requiring at least six modules to achieve a frequency coverage of 0.2–1.5 THz. Moreover, they are susceptible to problems like material losses, manufacturing and alignment tolerances etc., making them less than ideal for fast, broadband investigation. The main objective of this thesis is to design a robust but cost-effective characterization system based on a photonic method that can characterize THz components up to several THz in a single configuration. To achieve this, we design architectures for the Photonic Vector Network Analyzer (PVNA) concept, incorporating ErAs:In(Al)GaAs-based photoconductive sources and ErAs:InGaAs-based photoconductive receivers, driven with a femtosecond pulsed laser operating at 1550 nm. The broadband photonic devices replace narrowband electronic ones in order to record the Scattering (S)-parameters in a free space configuration. Corresponding calibration and data evaluation methods are also developed. Then the PVNAs are configured, and their capabilities are validated by characterizing various THz components, including a THz isolator, a distributed Bragg Reflector, a Split-Ring Resonator array and a Crossed-Dipole Resonator (CDR) array, in terms of their S-parameters. The PVNAs are also implemented to determine the complex refractive index or dielectric permittivity and physical thickness of several materials in the THz range. Finally, we develop an ErAs:In(Al)GaAs-based THz transceiver and implement it in a PVNA configuration, resulting in a more compact setup that is useful for industrial applications. The feasibility of such systems is also verified by characterizing several THz components. The configured systems achieve a bandwidth of more than 2.5 THz, exceeding the maximum attainable frequency of the commercial Electronic Vector Network Analyzer (EVNA) extender modules. For the 1.1-1.5 THz band, the dynamic range of 47-35 dB (Equivalent Noise Bandwidth (ENBW) = 9.196 Hz) achieved with the PVNA is comparable to the dynamic range of 45-25 dB (ENBW = 10 Hz) of the EVNA. Both amplitude and phase of the S-parameters, determined by the configured PVNAs, are compared with simulations or theoretical models and showed excellent agreement. The PVNA could discern multi-peak and narrow resonance characteristics despite its lower spectral resolution (∼3-7 GHz) compared to the EVNA. By accurately determining the S-parameters of multiple THz components, the transceiver-based PVNA also demonstrated its exceptional competence. With huge bandwidth and simpler calibration techniques, the PVNA provides a potential solution to bridge the existing technological gap in THz-range characterization systems and offers a solid platform for THz component development, paving the way for more widespread application of THz technologies in research and industry

    Laboratory for Atmospheres Instrument Systems Report

    Get PDF
    Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. These instrument systems perform one or both of the following: 1) provide information leading to a basic understanding of the relationship between atmospheric systems and processes, and 2) serve as calibration references for satellite instrument validation. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Balloon and airborne platforms facilitate regional measurements of precipitation, cloud systems, and ozone from high-altitude vantage points, but still within the atmosphere. Such platforms serve as stepping-stones in the development of space instruments. Satellites provide nearly global coverage of the Earth with spatial resolutions and repetition rates that vary from system to system. The products of atmospheric remote sensing are invaluable for research associated with water vapor, ozone, trace gases, aerosol particles, clouds, precipitation, and the radiative and dynamic processes that affect the climate of the Earth. These parameters also provide the basic information needed to develop models of global atmospheric processes and weather and climate prediction. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and the data processing systems

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Comprehensive proteome and phosproteome analysis of human LRRK2 Drosophila model of Parkinson's disease

    Get PDF
    Gene mutations in the leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal dominant Parkinson`s Disease (PD) and elevated levels of hLRRK2 mutant variants in Drosophila induces PD. Here, we introduced the human LRRK2 (R1441C) variant in dopaminergic neurons of flies and observed a reduced locomotor activity, an age dependent degeneration of dopaminergic neurons, and shorter lifetime. To better understand the hLRRK2 (R1441C) induced pathobiology, we performed stable isotope labeling in fly to accurately quantify the proteome and phosphoproteome dynamics. We quantified almost 3000 proteins and found several regulated cytoskeletal, mitochondrial, and synaptic vesicle (SV) proteins in our PD fly model. To explore the hLRRK2 (R1441C) function more precisely, we compared our model to three different alpha-Synuclein overexpressing fly strains (WT,A30P, A53T), which show a similar PD phenotype. For example, synaptotagmin, syntaxin and rab3 were only affected in hLRRK2 (R1441C) flies compared to all other tested fly strains. Moreover, our global phosphoproteome analysis revealed several synaptic vesicle proteins with enhanced phosphorylation, including synaptojanin (pT1131) and the microtubule-associated protein futsch (pS4106). Consistently, a protein-protein interaction screen confirmed that hLRRK2 is tightly associated with synaptic vesicle proteins. Thus, our results provide a systemic view on the pathobiology mechanism caused by hLRRK and S overexpression and suggest that the increased kinase activity of the hLRRK2 (R1441C) mutant results in enhanced phosphorylation of synaptojanin. These findings may contribute to develop new therapeutic strategies to prevent hLRRK2-induced Parkinson disease

    Millimeter-wave MIMO radars for radio-frequency imaging systems:A sparse array topology approach

    Get PDF

    The Deep Space Network

    Get PDF
    The various systems and subsystems are discussed for the Deep Space Network (DSN). A description of the DSN is presented along with mission support, program planning, facility engineering, implementation and operations
    • …
    corecore