23 research outputs found

    Domain-independent local search for linear integer optimization

    Get PDF
    Integer and combinatorial optimization problems constitute a major challenge for algorithmics. They arise when a large number of discrete organizational decisions have to be made, subject to constraints and optimization criteria. This thesis describes and investigates new domain-independent local search strategies for linear integer optimization. We introduce WSAT(OIP), an integer local search method which operates on an algebraic problem representation. WSAT(OIP) generalizes Walksat, a successful local search procedure for propositional satisfiability (SAT), to more expressive constraint systems. For this purpose, we introduce over-constrained integer programs (OIPs), a constraint class which is closely related to integer programs. OIP allows for a natural generalization of the principles of SAT local search to integer optimization. Further, it will be shown that OIPs are a special case of integer linear programs and permit combinations with linear programming for bound computation, initialization by rounding, search space reduction, and feasibility testing. The representation is similar enough to integer programs to make use of existing algebraic modeling languages as front-end to a local search solver. To improve performance on realistic problems, WSAT(OIP) incorporates strategies from Tabu Search. We experimentally investigate WSAT(OIP) for a variety of realistic integer optimization problems from the domains of time tabling, sports scheduling, radar surveillance, course assignment, and capacitated production planning. The experimental design examines efficiency, scaling (with increasing problem size and constrainedness), and robustness. The results demonstrate that integer local search can outperform or compete with state-of-the-art integer programming (IP) branch-and-bound and constraint programming (CP) approaches to these problems in finding near-optimal solutions. Key findings of our empirical study include that integer local search is able to solve difficult constraint problems from time-tabling and sports scheduling when cast into a 0-1 representation, which are beyond the scope of IP branch-and-bound strategies and for which devising robust constraint programs is a non-trivial task. For several realistic optimization problems (0-1 integer and finite domain) we show that integer local search exhibits graceful runtime scaling with increasing problem size and constrainedness. It can therefore significantly outperform IP branch-and-bound strategies on large or tightly constrained problems in finding near-optimal solutions. The problems under consideration are mostly beyond the limitations of a previous general-purpose simulated annealing strategy for 0-1 integer programs.Ganzzahlige und kombinatorische Optimierungsprobleme stellen eine schwierige Herausforderung im Gebiet der Algorithmen dar. Sie treten auf, wenn eine große Anzahl diskreter organisatorischer Entscheidungen unter Berücksichtigung von Constraints und Optimierungskriterien zu treffen sind. Diese Arbeit beschreibt und untersucht neue, domänenunabhängige Strategien der lokalen Suche zur ganzzahligen linearen Optimierung. Wir beschreiben WSAT(OIP), eine Strategie "ganzzahliger lokaler Suche\u27;, die auf einer algebraischen Problemrepräsentation operiert. WSAT(OIP) verallgemeinert Walksat, eine erfolgreiche Prozedur lokaler Suche für das Erfüllbarkeitsproblem der Aussagenlogik (SAT), auf ausdrucksstärkere Constraint-Systeme. Für diesen Zweck führen wir die Klasse der "Over-constrained Integer Programs\u27;(OIPs) ein, eine Constraint-Klasse, die eng mit ganzzahligen Programmen verwandt ist. OIPs erlauben einerseits eine natürliche Verallgemeinerung der Prinzipien von lokaler Suche für SAT. Andererseits sind sie ein Spezialfall der ganzzahligen linearen Programme und ermöglichen die Kombination mit linearer Programmierung zur Berechnung von Schranken, Initialisierung durch Rundung, Suchraum-Reduktion und für Gültigkeits-Tests. OIPs sind ganzzahligen Programmen ähnlich, so daß existierende algebraische Modellierungssprachen als Eingabeschnittstelle für einen Problemlöser benutzt werden können, der auf lokaler Suche basiert. Um die Performanz auf realistischen Problemen zu verbessern, ist WSAT(OIP) mit Strategien der Tabu-Suche ausgestattet. Wir führen eine experimentelle Untersuchung von WSAT(OIP) auf einer Reihe von realistischen ganzzahligen Constraint- und Optimierungsproblemen durch. Die Probleme stammen aus den Domänen Zeitplan-Erstellung, Sport-Ablaufplanung, Radar- Überwachung, Kurs-Zuteilung und Produktions-Planung. Das experimentelle Design untersucht Effizienz, Skalierung mit zunehmender Problemgröße und stärkeren Constraints sowie Robustheit. Die Ergebnisse zeigen, daß ganzzahlige lokale Suche bezüglich Performanz auf diesen Problemklassen zeitgemäße Ansätze der ganzzahligen Programmierung und der Constraint-Programmierung beim Finden nahe-optimaler Lösungen schlägt oder mit ihnen konkurriert. Kernergebnisse der empirischen Untersuchung sind, daß ganzzahlige lokale Suche in der Lage ist, schwierige Constraint-Probleme der Zeitplan-Erstellung und Sport-Ablaufplanung in einer 0-1 Repräsentation zu lösen, die außerhalb der Grenzen der ganzzahligen linearen Programmierung liegen, und für die die Entwicklung eines robustes Constraint-Programms eine nicht-triviale Aufgabe darstellt. Für mehrere realistische Optimierungsprobleme (ganzzahlig 0-1 und endliche Bereiche)zeigen wir, daß ganzzahlige lokale Suche eine günstige Skalierung der Laufzeit mit zunehmender Problemgröße und Constrainedness aufweist. Dadurch zeigt das Verfahren auf großen Problemen und auf Problemen mit starken Constraints deutlich bessere Performanz für das Finden nahe-Lösungen als die Branch-and-Bound Strategie der ganzzahligen Programmierung. Die untersuchten Probleme liegen zumeist außerhalb der Grenzen einer existierenden Simulated Annealing Strategie für allgemeine lineare 0-1 Programme

    Analysis of combinatorial search spaces for a class of NP-hard problems, An

    Get PDF
    2011 Spring.Includes bibliographical references.Given a finite but very large set of states X and a real-valued objective function ƒ defined on X, combinatorial optimization refers to the problem of finding elements of X that maximize (or minimize) ƒ. Many combinatorial search algorithms employ some perturbation operator to hill-climb in the search space. Such perturbative local search algorithms are state of the art for many classes of NP-hard combinatorial optimization problems such as maximum k-satisfiability, scheduling, and problems of graph theory. In this thesis we analyze combinatorial search spaces by expanding the objective function into a (sparse) series of basis functions. While most analyses of the distribution of function values in the search space must rely on empirical sampling, the basis function expansion allows us to directly study the distribution of function values across regions of states for combinatorial problems without the need for sampling. We concentrate on objective functions that can be expressed as bounded pseudo-Boolean functions which are NP-hard to solve in general. We use the basis expansion to construct a polynomial-time algorithm for exactly computing constant-degree moments of the objective function ƒ over arbitrarily large regions of the search space. On functions with restricted codomains, these moments are related to the true distribution by a system of linear equations. Given low moments supplied by our algorithm, we construct bounds of the true distribution of ƒ over regions of the space using a linear programming approach. A straightforward relaxation allows us to efficiently approximate the distribution and hence quickly estimate the count of states in a given region that have certain values under the objective function. The analysis is also useful for characterizing properties of specific combinatorial problems. For instance, by connecting search space analysis to the theory of inapproximability, we prove that the bound specified by Grover's maximum principle for the Max-Ek-Lin-2 problem is sharp. Moreover, we use the framework to prove certain configurations are forbidden in regions of the Max-3-Sat search space, supplying the first theoretical confirmation of empirical results by others. Finally, we show that theoretical results can be used to drive the design of algorithms in a principled manner by using the search space analysis developed in this thesis in algorithmic applications. First, information obtained from our moment retrieving algorithm can be used to direct a hill-climbing search across plateaus in the Max-k-Sat search space. Second, the analysis can be used to control the mutation rate on a (1+1) evolutionary algorithm on bounded pseudo-Boolean functions so that the offspring of each search point is maximized in expectation. For these applications, knowledge of the search space structure supplied by the analysis translates to significant gains in the performance of search

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hängt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente für das Lösen von Constraint-Satisfaction-Problemen (wie dem Erfüllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die ähnliche Konflikte zukünftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der Künstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, Zustände, von denen aus die Zielbedingung nicht erreicht werden kann. Wir präsentieren Methoden, die es ermöglichen, während der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen über Sackgassen zu erlernen. Unsere Arbeit umfasst folgende Beiträge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu führen, dass die Zielbedingung nicht unter allen Umständen erfüllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen für MaxProb sind jedoch wenig erforscht. Um diese Lücke zu schließen, erstellen wir einen umfangreichen Bausatz für Suchmethoden in probabilistischen Zustandsräumen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und Abschätzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie für heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen Zustandsräumen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken ähnliche Eigenschaften auf wie das konfliktgesteuerte Lernen für Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von Plänen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, führen kann

    Solution Biases and Pheromone Representation Selection in Ant Colony Optimisation.

    Get PDF
    Combinatorial optimisation problems (COPs) pervade human society: scheduling, design, layout, distribution, timetabling, resource allocation and project management all feature problems where the solution is some combination of elements, the overall value of which needs to be either maximised or minimised (i.e., optimised), typically subject to a number of constraints. Thus, techniques to efficiently solve such problems are an important area of research. A popular group of optimisation algorithms are the metaheuristics, approaches that specify how to search the space of solutions in a problem independent way so that high quality solutions are likely to result in a reasonable amount of computational time. Although metaheuristic algorithms are specified in a problem independent manner, they must be tailored to suit each particular problem to which they are applied. This thesis investigates a number of aspects of the application of the relatively new Ant Colony Optimisation (ACO) metaheuristic to different COPs. The standard ACO metaheuristic is a constructive algorithm loosely based on the foraging behaviour of ant colonies, which are able to find the shortest path to a food source by indirect communication through pheromones. ACO’s artificial pheromone represents a model of the solution components that its artificial ants use to construct solutions. Developing an appropriate pheromone representation is a key aspect of the application of ACO to a problem. An examination of existing ACO applications and the constructive approach more generally reveals how the metaheuristic can be applied more systematically across a range of COPs. The two main issues addressed in this thesis are biases inherent in the constructive process and the systematic selection of pheromone representations. The systematisation of ACO should lead to more consistently high performance of the algorithm across different problems. Additionally, it supports the creation of a generalised ACO system, capable of adapting itself to suit many different combinatorial problems without the need for manual intervention

    Distributed constraint satisfaction for coordinating and integrating a large-scale, heterogeneous enterprise

    Get PDF
    Market forces are continuously driving public and private organisations towards higher productivity, shorter process and production times, and fewer labour hours. To cope with these changes, organisations are adopting new organisational models of coordination and cooperation that increase their flexibility, consistency, efficiency, productivity and profit margins. In this thesis an organisational model of coordination and cooperation is examined using a real life example; the technical integration of a distributed large-scale project of an international physics collaboration. The distributed resource constraint project scheduling problem is modelled and solved with the methods of distributed constraint satisfaction. A distributed local search method, the distributed breakout algorithm (DisBO), is used as the basis for the coordination scheme. The efficiency of the local search method is improved by extending it with an incremental problem solving scheme with variable ordering. The scheme is implemented as central algorithm, incremental breakout algorithm (IncBO), and as distributed algorithm, distributed incremental breakout algorithm (DisIncBO). In both cases, strong performance gains are observed for solving underconstrained problems. Distributed local search algorithms are incomplete and lack a termination guarantee. When problems contain hard or unsolvable subproblems and are tightly or overconstrained, local search falls into infinite cycles without explanation. A scheme is developed that identifies hard or unsolvable subproblems and orders these to size. This scheme is based on the constraint weight information generated by the breakout algorithm during search. This information, combined with the graph structure, is used to derive a fail first variable order. Empirical results show that the derived variable order is 'perfect'. When it guides simple backtracking, exceptionally hard problems do not occur, and, when problems are unsolvable, the fail depth is always the shortest. Two hybrid algorithms, BOBT and BOBT-SUSP are developed. When the problem is unsolvable, BOBT returns the minimal subproblem within the search scope and BOBT-SUSP returns the smallest unsolvable subproblem using a powerful weight sum constraint. A distributed hybrid algorithm (DisBOBT) is developed that combines DisBO with DisBT. The distributed hybrid algorithm first attempts to solve the problem with DisBO. If no solution is available after a bounded number of breakouts, DisBO is terminated, and DisBT solves the problem. DisBT is guided by a distributed variable order that is derived from the constraint weight information and the graph structure. The variable order is incrementally established, every time the partial solution needs to be extended, the next variable within the order is identified. Empirical results show strong performance gains, especially when problems are overconstrained and contain small unsolvable subproblems

    Time and resource constrained scheduling, with applications to space station planning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1988.Bibliography: v. 1, leaves 198-203.by Clifford Roger Kurtzman.Ph.D

    A model-aware inexact Newton scheme for electrical impedance tomography

    Get PDF
    This work gives new insights into the EIT model. Firstly, a novel relation between the conductivity and the data is derived, giving quantitative insights about the instability of the inverse problem. Secondly, a reconstruction framework is introduced which estimates unknown model parameters and then solves the problem with a tailored Newton method. Additional problem-specific optimizations are incorporated into the framework. Simulations verify its efficiency for simulated and measured data

    Exploiting Structure In Combinatorial Problems With Applications In Computational Sustainability

    Full text link
    Combinatorial decision and optimization problems are at the core of many tasks with practical importance in areas as diverse as planning and scheduling, supply chain management, hardware and software verification, electronic commerce, and computational biology. Another important source of combinatorial problems is the newly emerging field of computational sustainability, which addresses decision-making aimed at balancing social, economic and environmental needs to guarantee the long-term prosperity of life on our planet. This dissertation studies different forms of problem structure that can be exploited in developing scalable algorithmic techniques capable of addressing large real-world combinatorial problems. There are three major contributions in this work: 1) We study a form of hidden problem structure called a backdoor, a set of key decision variables that captures the combinatorics of the problem, and reveal that many real-world problems encoded as Boolean satisfiability or mixed-integer linear programs contain small backdoors. We study backdoors both theoretically and empirically and characterize important tradeoffs between the computational complexity of finding backdoors and their effectiveness in capturing problem structure succinctly. 2) We contribute several domain-specific mathematical formulations and algorithmic techniques that exploit specific aspects of problem structure arising in budget-constrained conservation planning for wildlife habitat connectivity. Our solution approaches scale to real-world conservation settings and provide important decision-support tools for cost-benefit analysis. 3) We propose a new survey-planning methodology to assist in the construction of accurate predictive models, which are especially relevant in sustainability areas such as species- distribution prediction and climate-change impact studies. In particular, we design a technique that takes advantage of submodularity, a structural property of the function to be optimized, and results in a polynomial-time procedure with approximation guarantees

    Real-time algorithm configuration

    Get PDF
    This dissertation presents a number of contributions to the field of algorithm configur- ation. In particular, we present an extension to the algorithm configuration problem, real-time algorithm configuration, where configuration occurs online on a stream of instances, without the need for prior training, and problem solutions are returned in the shortest time possible. We propose a framework for solving the real-time algorithm configuration problem, ReACT. With ReACT we demonstrate that by using the parallel computing architectures, commonplace in many systems today, and a robust aggregate ranking system, configuration can occur without any impact on performance from the perspective of the user. This is achieved by means of a racing procedure. We show two concrete instantiations of the framework, and show them to be on a par with or even exceed the state-of-the-art in offline algorithm configuration using empirical evaluations on a range of combinatorial problems from the literature. We discuss, assess, and provide justification for each of the components used in our framework instantiations. Specifically, we show that the TrueSkill ranking system commonly used to rank players’ skill in multiplayer games can be used to accurately es- timate the quality of an algorithm’s configuration using only censored results from races between algorithm configurations. We confirm that the order that problem instances arrive in influences the configuration performance and that the optimal selection of configurations to participate in races is dependent on the distribution of the incoming in- stance stream. We outline how to maintain a pool of quality configurations by removing underperforming configurations, and techniques to generate replacement configurations with minimal computational overhead. Finally, we show that the configuration space can be reduced using feature selection techniques from the machine learning literature, and that doing so can provide a boost in configuration performance
    corecore