3,466 research outputs found

    Building Networks in the Face of Uncertainty

    Get PDF
    The subject of this thesis is to study approximation algorithms for some network design problems in face of uncertainty. We consider two widely studied models of handling uncertainties - Robust Optimization and Stochastic Optimization. We study a robust version of the well studied Uncapacitated Facility Location Problem (UFLP). In this version, once the set of facilities to be opened is decided, an adversary may close at most β facilities. The clients must then be assigned to the remaining open facilities. The performance of a solution is measured by the worst possible set of facilities that the adversary may close. We introduce a novel LP for the problem, and provide an LP rounding algorithm when all facilities have same opening costs. We also study the 2-stage Stochastic version of the Steiner Tree Problem. In this version, the set of terminals to be covered is not known in advance. Instead, a probability distribution over the possible sets of terminals is known. One is allowed to build a partial solution in the first stage a low cost, and when the exact scenario to be covered becomes known in the second stage, one is allowed to extend the solution by building a recourse network, albeit at higher cost. The aim is to construct a solution of low cost in expectation. We provide an LP rounding algorithm for this problem that beats the current best known LP rounding based approximation algorithm

    Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty

    Get PDF
    In this paper we study how to optimally balance cheap inflexible resources with more expensive, reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the MinEMax model to study "build versus rent" problems. In our model different scenarios appear independently. Before knowing which scenarios appear, we may build rigid resources that cannot be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent reconfigurable but expensive resources to use across scenarios. Although computing the objective in our model might seem to require enumerating exponentially-many possibilities, we show it is well estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this objective we design algorithms that approximately-optimally balance inflexible and reconfigurable resources for several NP-hard covering problems. For example, we study variants of minimum spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate between previous demand-robust and stochastic two-stage problems

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    Approximation algorithms for stochastic and risk-averse optimization

    Full text link
    We present improved approximation algorithms in stochastic optimization. We prove that the multi-stage stochastic versions of covering integer programs (such as set cover and vertex cover) admit essentially the same approximation algorithms as their standard (non-stochastic) counterparts; this improves upon work of Swamy \& Shmoys which shows an approximability that depends multiplicatively on the number of stages. We also present approximation algorithms for facility location and some of its variants in the 22-stage recourse model, improving on previous approximation guarantees. We give a 2.29752.2975-approximation algorithm in the standard polynomial-scenario model and an algorithm with an expected per-scenario 2.49572.4957-approximation guarantee, which is applicable to the more general black-box distribution model.Comment: Extension of a SODA'07 paper. To appear in SIAM J. Discrete Mat

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15
    • …
    corecore