165 research outputs found

    The normalized backpropagation and some experiments on speech recognition

    Get PDF
    In the paper we present the theoretical development of the normalized backpropagation, and we compare it with other algorithms that have been presented in the literature. The algorithm that we propose is based on the idea of normalizing the adaptation step in the gradient search by the variance of the input. This algorithm is simple and gives good results in comparison with other algorithms that accelerate the learning and has the additional advantage that the parameters are calculated by the algorithm, so the user does not have to make several trials in order to trim the adaptation step and the momentum until the best combination is found. The task which we have designed in order to compare the algorithms is the recognition of digits in the Catalan language, with a data base of 1000 items, spoken by 10 speakers. The algorithms that we have compared with the normalized back propagation are: D.E.Rumelhart and J .L. McCielland, Franzini, Suddhard, Fahlman, Monte.Peer ReviewedPostprint (published version

    Pole -mounted sonar vibration prediction using CMAC neural networks

    Get PDF
    The efficiency and accuracy of pole-mounted sonar systems are severely affected by pole vibration, Traditional signal processing techniques are not appropriate for the pole vibration problem due to the nonlinearity of the pole vibration and the lack of a priori knowledge about the statistics of the data to be processed. A novel approach of predicting the pole-mounted sonar vibration using CMAC neural networks is presented. The feasibility of this approach is studied in theory, evaluated by simulation and verified with a real-time laboratory prototype, Analytical bounds of the learning rate of a CMAC neural network are derived which guarantee convergence of the weight vector in the mean. Both simulation and experimental results indicate the CMAC neural network is an effective tool for this vibration prediction problem

    Applications of fuzzy counterpropagation neural networks to non-linear function approximation and background noise elimination

    Get PDF
    An adaptive filter which can operate in an unknown environment by performing a learning mechanism that is suitable for the speech enhancement process. This research develops a novel ANN model which incorporates the fuzzy set approach and which can perform a non-linear function approximation. The model is used as the basic structure of an adaptive filter. The learning capability of ANN is expected to be able to reduce the development time and cost of the designing adaptive filters based on fuzzy set approach. A combination of both techniques may result in a learnable system that can tackle the vagueness problem of a changing environment where the adaptive filter operates. This proposed model is called Fuzzy Counterpropagation Network (Fuzzy CPN). It has fast learning capability and self-growing structure. This model is applied to non-linear function approximation, chaotic time series prediction and background noise elimination

    Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments

    Get PDF
    We experimentally investigate mutual information and generalized mutual information for coherent optical transmission systems. The impact of the assumed channel distribution on the achievable rate is investigated for distributions in up to four dimensions. Single channel and wavelength division multiplexing (WDM) transmission over transmission links with and without inline dispersion compensation are studied. We show that for conventional WDM systems without inline dispersion compensation, a circularly symmetric complex Gaussian distribution is a good approximation of the channel. For other channels, such as with inline dispersion compensation, this is no longer true and gains in the achievable information rate are obtained by considering more sophisticated four-dimensional (4D) distributions. We also show that for nonlinear channels, gains in the achievable information rate can also be achieved by estimating the mean values of the received constellation in four dimensions. The highest gain for such channels is seen for a 4D correlated Gaussian distribution

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Energy-Efficient Digital Signal Processing for Fiber-Optic Communication Systems

    Get PDF
    Modern fiber-optic communication systems rely on complex digital signal processing (DSP) and forward error correction (FEC), which contribute to a significant amount of the over-all link power dissipation. Bandwidth demands are evergrowing and circuit technology scaling will due to fundamental reasons come to an end; energy-efficient design of DSP is thus necessary both from a sustainability perspective and a technical perspective. This thesis explores energy-efficient design of the sub-systems that are estimated to contribute to the majority of the receiver application-specific integrated-circuit power dissipation: chromatic-dispersion compensation, dynamic equalization, nonlinearity mitigation, and forward error correction. With a focus on real-time-processing circuit implementation of the considered algorithms, aspects such as finite-precision effects, pipelining, and parallel processing are explored, the impact on compensation and correction performance is investigated, and energy-efficient circuit implementations are developed. The sub-systems are investigated both individually, and in a system context. DSP designs showing significant energy-efficiency improvements are presented, as well as very high-throughput, energy-efficient, FEC designs. The subsystems are also considered in the context of datacenter interconnect links, and it is shown that DSP-based coherent systems are feasible even in power constrained settings
    corecore