42 research outputs found

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results

    Dynamical Analysis for High-Order Delayed Hopfield Neural Networks with Impulses

    Get PDF
    The global exponential stability and uniform stability of the equilibrium point for high-order delayed Hopfield neural networks with impulses are studied. By utilizing Lyapunov functional method, the quality of negative definite matrix, and the linear matrix inequality approach, some new stability criteria for such system are derived. The results are related to the size of delays and impulses. Two examples are also given to illustrate the effectiveness of our results

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay

    Get PDF
    In this brief, the problem of global asymptotic stability for delayed Hopfield neural networks (HNNs) is investigated. A new criterion of asymptotic stability is derived by introducing a new kind of Lyapunov-Krasovskii functional and is formulated in terms of a linear matrix inequality (LMI), which can be readily solved via standard software. This new criterion based on a delay fractioning approach proves to be much less conservative and the conservatism could be notably reduced by thinning the delay fractioning. An example is provided to show the effectiveness and the advantage of the proposed result. © 2008 IEEE.published_or_final_versio

    Asymptotic Stability and Exponential Stability of Impulsive Delayed Hopfield Neural Networks

    Get PDF
    A criterion for the uniform asymptotic stability of the equilibrium point of impulsive delayed Hopfield neural networks is presented by using Lyapunov functions and linear matrix inequality approach. The criterion is a less restrictive version of a recent result. By means of constructing the extended impulsive Halanay inequality, we also analyze the exponential stability of impulsive delayed Hopfield neural networks. Some new sufficient conditions ensuring exponential stability of the equilibrium point of impulsive delayed Hopfield neural networks are obtained. An example showing the effectiveness of the present criterion is given

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model
    corecore