39 research outputs found

    Linear quadratic regulation of polytopic time-inhomogeneous Markov jump linear systems (extended version)

    Get PDF
    In most real cases transition probabilities between operational modes of Markov jump linear systems cannot be computed exactly and are time-varying. We take into account this aspect by considering Markov jump linear systems where the underlying Markov chain is polytopic and time-inhomogeneous, i.e. its transition probability matrix is varying over time, with variations that are arbitrary within a polytopic set of stochastic matrices. We address and solve for this class of systems the infinite-horizon optimal control problem. In particular, we show that the optimal controller can be obtained from a set of coupled algebraic Riccati equations, and that for mean square stabilizable systems the optimal finite-horizon cost corresponding to the solution to a parsimonious set of coupled difference Riccati equations converges exponentially fast to the optimal infinite-horizon cost related to the set of coupled algebraic Riccati equations. All the presented concepts are illustrated on a numerical example showing the efficiency of the provided solution.Comment: Extended version of the paper accepted for the presentation at the European Control Conference (ECC 2019

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Fault detection filter and fault accommodation controller design for uncertain systems

    Get PDF
    Model-based Fault Detection (FD) and Fault Accommodation (FA) approaches have been applied in a variety of cases. We propose several techniques to include uncertainties in the design process. First, we focus on the design of the Fault Detection Filter (FDF) and Fault Accommodation Controller (FAC) for Markovian Jump Linear Systems (MJLS). The MJLS framework allows us to include the network behavior (packet loss) during the design of the FDF and FAC.Second, we propose an FDF and FAC design for the MJLS, under the assumption that the Markov chain mode is not directly accessible. Since we are using the MJLS framework to model the network behavior, the assumption that the network state is not instantly accessible is useful because from a practical standpoint this is a truthful assumption. Third, from the results presented for the MJLS framework, we provided follow-up results using Lur'e Markov Jump System. This is compelling since on some occasions the non-linear behavior cannot be ignored. Therefore, applying the Lur'e MJS framework allows us to consider the same assumptions from MJLS, but now adds the non-linearities. Fourth, we propose the design Gain-Scheduled FDF and FAC for Linear Parameter Varying (LPV) systems, under the assumption that the schedule parameter is not directly acquired. We assume that the schedule parameter is subject to additive noise. This imprecision is included during the design, using change of variables and multi-simplex techniques. Finally, throughout the thesis, we provide some numerical examples to illustrate the viability of the proposed approaches

    Stabilization of Linear Systems Over Markov communication channels

    Get PDF

    Approximate Stochastic Optimal Control of Smooth Nonlinear Systems and Piecewise Linear Systems

    Get PDF

    Stochastic Control for Cooperative Cyber-Physical Networking

    Get PDF
    Die stetig fortschreitende Digitalisierung erlaubt einen immer autonomeren und intelligenteren Betrieb von Produktions- und Fertigungslinien, was zu einer stärker werdenden Verzahnung der physikalischen Prozesse und der Software-Komponenten zum Überwachen, Steuern und Messen führt. Cyber-physische Systeme (CPS) spielen hierbei eine Schlüsselrolle, indem sie sowohl die physikalischen als auch die Software-Komponenten zu einem verteilten System zusammenfassen, innerhalb dessen Umgebungszustände, Messwerte und Steuerbefehle über ein Kommunikationsnetzwerk ausgetauscht werden. Die Verfügbarkeit von kostengünstigen Geräten und die Möglichkeit bereits existierende Infrastruktur zu nutzen sorgen dafür, dass auch innerhalb von CPS zunehmend auf den Einsatz von Standard-Netzen auf Basis von IEEE 802.3 (Ethernet) und IEEE 802.11 (WLAN) gesetzt wird. Nachteilig bei der Nutzung von Standard-Netzen sind jedoch auftretende Dienstgüte-Schwankungen, welche aus der gemeinsamen Nutzung der vorhandenen Infrastruktur resultieren und für die Endsysteme in Form von sich ändernden Latenzen und Daten- und Paketverlustraten sichtbar werden. Regelkreise sind besonders anfällig für Dienstgüte-Schwankungen, da sie typischerweise isochrone Datenübertragungen mit festen Latenzen benötigen, um die gewünschte Regelgüte zu garantieren. Für die Vernetzung der einzelnen Komponenten, das heißt von Sensorik, Aktorik und Regler, setzt man daher klassischerweise auf Lösungen, die diese Anforderungen erfüllen. Diese Lösungen sind jedoch relativ teuer und unflexibel, da sie den Einsatz von spezialisierten Netzwerken wie z.B. Feldbussen benötigen oder über komplexe, speziell entwickelte Kommunikationsprotokolle realisiert werden wie sie beispielsweise die Time-Sensitive Networking (TSN) Standards definieren. Die vorliegende Arbeit präsentiert Ergebnisse des interdisziplinären Forschungsprojekts CoCPN:Cooperative Cyber-Physical Networking, das ein anderes Konzept verfolgt und explizit auf CPS abzielt, die Standard-Netze einsetzen. CoCPN benutzt einen neuartigen, kooperativen Ansatz um i) die Elastizität von Regelkreisen innerhalb solcher CPS zu erhöhen, das heißt sie in die Lage zu versetzen, mit den auftretenden Dienstgüte-Schwankungen umzugehen, und ii) das Netzwerk über die Anforderungen der einzelnen Regler in Kenntnis zu setzen. Kern von CoCPN ist eine verteilte Architektur für CPS, welche es den einzelnen Regelkreisen ermöglicht, die verfügbare Kommunikations-Infrastruktur gemeinsam zu nutzen. Im Gegensatz zu den oben genannten Lösungen benötigt CoCPN dafür keine zentrale Instanz mit globaler Sicht auf das Kommunikationssystem, sodass eine enge Kopplung an die Anwendungen vermieden wird. Stattdessen setzt CoCPN auf eine lose Kopplung zwischen Netzwerk und Regelkreisen, realisiert in Form eines Austauschs von Meta-Daten über den sog. CoCPN-Translator. CoCPN implementiert ein Staukontrollverfahren, welches den typischen Zusammenhang zwischen erreichbarer Regelgüte und Senderate ausnutzt: die erreichbare Regelgüte steigt mit der Senderate und umgekehrt. Durch Variieren der zu erreichenden Regelgüte kann das Sendeverhalten der Regler so eingestellt werden, dass die vorhandenen Kommunikations-Ressourcen optimal ausgenutzt und gleichzeitig Stausituationen vermieden werden. In dieser Arbeit beschäftigen wir uns mit den regelungstechnischen Fragestellungen innerhalb von CoCPN. Der Schwerpunkt liegt hierbei auf dem Entwurf und der Analyse von Algorithmen, die auf Basis der über den CoCPN-Translator ausgetauschten Meta-Daten die notwendige Elastizität liefern und es dadurch den Reglern ermöglichen, schnell auf Änderungen der Netzwerk-Dienstgüte zu reagieren. Dazu ist es notwendig, dass den Reglern ein Modell zur Verfügung gestellt wird, dass die Auswirkungen von Verzögerungen und Paketverlusten auf die Regelgüte erfasst. Im ersten Teil der Arbeit wird eine Erweiterung eines existierenden Modellierungs-Ansatzes vorgestellt, dessen Grundidee es ist, sowohl die Dynamik der Regelstrecke als auch den Einfluss von Verzögerungen und Paketverlusten durch ein hybrides System darzustellen. Hybride Systeme zeichnen sich dadurch aus, dass sie sowohl kontinuierlich- als auch diskretwertige Zustandsvariablen besitzen. Unsere vorgestellte Erweiterung ist in der Lage, Änderungen der Netzwerk-Dienstgüte abzubilden und ist nicht auf eine bestimmte probabilistische Darstellung der auftretenden Verzögerungen und Paketverluste beschränkt. Zusätzlich verzichtet unsere Erweiterung auf die in der Literatur übliche Annahme, dass Quittungen für empfangene Datenpakete stets fehlerfrei und mit vernachlässigbarer Latenz übertragen werden. Verglichen mit einem Großteil der verwandten Arbeiten, ermöglichen uns die genannten Eigenschaften daher eine realistischere Berücksichtigung der Netzwerk-Einflüsse auf die Regelgüte. Mit dem entwickelten Modell kann der Einfluss von Verzögerungen und Paketverlusten auf die Regelgüte prädiziert werden. Auf Basis dieser Prädiktion können Stellgrößen dann mit Methoden der stochastischen modellprädiktiven Regelung (stochastic model predictive control) berechnet werden. Unsere realistischere Betrachtung der Netzwerk-Einflüsse auf die Regelgüte führt hierbei zu einer gegenseitigen Abhängigkeit von Regelung und Schätzung. Zur Berechnung der Stellgrößen muss der Regler den Zustand der Strecke aus den empfangenen Messungen schätzen. Die Qualität dieser Schätzungen hängt von den berechneten Stellgrößen und deren Auswirkung auf die Regelstrecke ab. Umgekehrt beeinflusst die Qualität der Schätzungen aber maßgeblich die Qualität der Stellgrößen: Ist der Schätzfehler gering, kann der Regler bessere Entscheidungen treffen. Diese gegenseitige Abhängigkeit macht die Berechnung von optimalen Stellgrößen unmöglich und bedingt daher die Fokussierung auf das Erforschen von approximativen Ansätzen. Im zweiten Teil dieser Arbeit stellen wir zwei neuartige Verfahren für die stochastische modellprädiktive Regelung über Netzwerke vor. Im ersten Verfahren nutzen wir aus, dass bei hybriden System oft sogenannte multiple model-Algorithmen zur Zustandsschätzung verwendet werden, welche den geschätzten Zustand in Form einer Gaußmischdichte repräsentieren. Auf Basis dieses Zusammenhangs und einer globalen Approximation der Kostenfunktion leiten wir einen Algorithmus mit geringer Komplexität zur Berechnung eines (suboptimalen) Regelgesetzes her. Dieses Regelgesetz ist nichtlinear und ergibt sich aus der gewichteten Kombination mehrerer unterlagerter Regelgesetze. Jedes dieser unterlagerten Regelgesetze lässt sich dabei als lineare Funktion genau einer der Komponenten der Gaußmischdichte darstellen. Unser zweites vorgestelltes Verfahren besitzt gegensätzliche Eigenschaften. Das resultierende Regelgesetz ist linear und basiert auf einer Approximation der Kostenfunktion, welche wir nur lokal, das heißt nur in der Umgebung einer erwarteten Trajektorie des geregelten Systems, berechnen. Diese Trajektorie wird hierbei durch die Prädiktion einer initialen Zustandsschätzung über den Optimierungshorizont gewonnen. Zur Berechnung des Regelgesetzes schlagen wir dann einen iterativen Algorithmus vor, welcher diese Approximation durch wiederholtes Optimieren der System-Trajektorie verbessert. Simulationsergebnisse zeigen, dass unsere neuartigen Verfahren eine signifikant höhere Regelgüte erzielen können als verwandte Ansätze aus der Literatur. Der dritte Teil der vorliegenden Arbeit beschäftigt sich erneut mit dem hybriden System aus dem ersten Teil. Die im Rahmen dieser Arbeit verwendeten Netzwerk-Modelle, das heißt die verwendeten probabilistischen Beschreibungen der Verzögerungen und Paketverluste, werden vom CoCPN-Translator auf Grundlage von im Netzwerk gesammelten Status-Informationen erzeugt. Diese Status-Informationen bilden jedoch stets nur Ausschnitte ab und können nie exakt den "Zustand” des Netzwerks repräsentieren. Dementsprechend können die resultierenden Netzwerk-Modelle nicht als fehlerfrei erachtet werden. In diesem Teil der Arbeit untersuchen wir daher den Einfluss möglicher Fehler in den Netzwerk-Modellen auf die zu erwartende Regelgüte. Weiterhin gehen wir der Frage nach der Existenz von Reglern, die robust gegenüber solchen Fehlern und Unsicherheiten sind, nach. Dazu zeigen wir zunächst, dass sich Fehler in den Netzwerk-Modellen immer als eine polytopische Parameter-Unsicherheit im hybriden System aus dem ersten Teil manifestieren. Für solche polytopischen hybride System leiten wir dann eine sowohl notwendige als auch hinreichende Stabilitätsbedingung her, was einen signifikanten Beitrag zur Theorie der hybriden Systeme darstellt. Die Auswertung dieser Bedingung erfordert es zu bestimmen, ob der gemeinsame Spektralradius (joint spectral radius) einer Menge von Matrizen kleiner als eins ist. Dieses Entscheidungsproblem ist bekanntermaßen NP-schwer, was die Anwendbarkeit der Stabilitätsbedingung stark limitiert. Daher präsentieren wir eine hinreichende Stabilitätsbedingung, die in polynomieller Zeit überprüft werden kann, da sie auf der Erfüllbarkeit von linearen Matrixungleichungen basiert. Schließlich zeigen wir, dass die Existenz eines Reglers, der die Stabilität des betrachteten polytopischen hybriden Systems garantiert, von der Erfüllbarkeit einer ähnlichen Menge von Matrixungleichungen bestimmt wird. Diese Ungleichungen sind weniger restriktiv als die bisher in der Literatur bekannten, was die Synthese von weniger konservativen Reglern erlaubt. Schließlich zeigen wir im letzten Teil dieser Arbeit die Anwendbarkeit des kooperativen Konzepts von CoCPN in Simulations-Szenarien, in denen stark ausgelastete Netzwerk-Ressourcen mit anderen Anwendungen geteilt werden müssen. Wir demonstrieren, dass insbesondere das Zusammenspiel unserer modellprädiktiven Verfahren mit dem Staukontrollverfahren von CoCPN einen zuverlässigen Betrieb der Regelkreise ohne unerwünschte Einbußen der Regelgüte auch dann ermöglicht, wenn sich die Kommunikationsbedingungen plötzlich und unvorhergesehen ändern. Insgesamt stellt unsere Arbeit somit einen wichtigen Baustein auf dem Weg zu einem flächendeckenden Einsatz von Standard-Netzen als flexible und adaptive Basis für industrielle CPS dar

    Networked Control System Design and Parameter Estimation

    Get PDF
    Networked control systems (NCSs) are a kind of distributed control systems in which the data between control components are exchanged via communication networks. Because of the attractive advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis and maintenance, the research on NCSs has received much attention in recent years. The first part (Chapter 2 - Chapter 4) of the thesis is devoted to designing new controllers for NCSs by incorporating the network-induced delays. The thesis also conducts research on filtering of multirate systems and identification of Hammerstein systems in the second part (Chapter 5 - Chapter 6). Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed controller depends on both S-C and C-A delays. The resulting closed-loop system is a special jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is considered. The definitions of H₂ and H∞ norms for the special system are first proposed. Also, the plant uncertainties are considered in the design. Finally, the robust mixed H₂/H∞ control problem is solved under the framework of LMIs. To compensate for both S-C and C-A delays modeled by Markov chains, the generalized predictive control method is modified to choose certain predicted future control signal as the current control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria in terms of LMIs are provided to check the system stability. The proposed method is also tested on an experimental hydraulic position control system. Multirate systems exist in many practical applications where different sampling rates co-exist in the same system. The l₂-l∞ filtering problem for multirate systems is considered in the thesis. By using the lifting technique, the system is first transformed to a linear time-invariant one, and then the filter design is formulated as an optimization problem which can be solved by using LMI techniques. Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic system, which can find many applications in different areas. New switching sequences to handle the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based on the idea of replacing the unmeasurable terms with their estimates is developed to identify the Hammerstein model with two-segment nonlinearities. Finally, several open problems are listed as the future research directions

    Fault accommodation controller under Markovian jump linear systems with asynchronous modes

    Get PDF
    We tackle the fault accommodation control (FAC) in the Markovian jump linear system (MJLS) framework for the discrete-time domain, under the assumption that it is not possible to access the Markov chain mode. This premise brings some challenges since the controllers are no longer allowed to depend on the Markov chain, meaning that there is an asynchronism between the system and the controller modes. To tackle this issue, a hidden Markov chain ((Formula presented.), (Formula presented.)) is used where θ(k) denotes the Markov chain mode, and (Formula presented.) denotes the estimated mode. The main novelty of this work is the design of H∞ and H2 FAC under the MJLS framework considering partial observation of the Markov chain. Both designs are obtained via bilinear matrix inequalities optimization problems, which are solved using coordinate descent algorithm. As secondary results, we present simulations using a two-degree of freedom serial flexible joint robot to illustrate the viability of the proposed approach
    corecore