718 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. ^ Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. ^ These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external disturbances such as wind gusts and turbulence. This thesis develops the ARC-LMI attitude and position controllers for an X-configuration quadrotor helicopter. The inner-loop of the autopilot controls the attitude and altitude of the quadrotor, and the outer-loop controls its position in the earth-fixed coordinate frame. Furthermore, by intelligently generating a smooth trajectory from the given reference coordinates (waypoints), the transient performance is improved. The simulation results indicate that the ARC-LMI controller design is useful for a variety of quadrotor applications, including precise trajectory tracking, autonomous waypoint navigation in the presence of disturbances, and package delivery without loss of performanc

    Analysis and design of quadratically bounded QPV control systems

    Get PDF
    © 2019. ElsevierA nonlinear system is said to be quadratically bounded (QB) if all its solutions are bounded and this is guaranteed using a quadratic Lyapunov function. This paper considers the QB analysis and state-feedback controller design problems for quadratic parameter varying (QPV) systems. The developed approach, which relies on a linear matrix inequality (LMIs) feasibility problem, ensures that the QB property holds for an invariant ellipsoid which contains a predefined polytopic region of the state space. An example is used to illustrate the main characteristics of the proposed approach and to confirm the validity of the theoretical results.Peer ReviewedPostprint (author's final draft

    A State Observer Design for Simultaneous Estimation of Charge State and Crossover in Self-Discharging Disproportionation Redox Flow Batteries

    Full text link
    This paper presents an augmented state observer design for the simultaneous estimation of charge state and crossover flux in disproportionation redox flow batteries, which exhibits exponential estimation error convergence to a bounded residual set. The crossover flux of vanadium through the porous separator is considered as an unknown function of the battery states, model-approximated as the output of a persistently excited linear system. This parametric model and the simple isothermal lumped parameter model of the battery are combined to form an augmented space state representation suitable for the observer design, which is carried out via Lyapunov stability theory including the error-uncertainty involved in the approximation of the crossover flux. The observer gain is calculated by solving a polytopic linear matrix inequality problem via convex optimization. The performance of this design is evaluated with a laboratory flow battery prototype undergoing self-discharge.Comment: arXiv admin note: text overlap with arXiv:1903.0407

    Safety Control Synthesis with Input Limits: a Hybrid Approach

    Full text link
    We introduce a hybrid (discrete--continuous) safety controller which enforces strict state and input constraints on a system---but only acts when necessary, preserving transparent operation of the original system within some safe region of the state space. We define this space using a Min-Quadratic Barrier function, which we construct along the equilibrium manifold using the Lyapunov functions which result from linear matrix inequality controller synthesis for locally valid uncertain linearizations. We also introduce the concept of a barrier pair, which makes it easy to extend the approach to include trajectory-based augmentations to the safe region, in the style of LQR-Trees. We demonstrate our controller and barrier pair synthesis method in simulation-based examples.Comment: 6 pages, 7 figures. Accepted for publication at the 2018 American Controls Conference. Copyright IEEE 201

    Fault estimation and active fault tolerant control for linear parameter varying descriptor systems

    Get PDF
    Starting with the baseline controller design, this paper proposes an integrated approach of active fault tolerant control based on proportional derivative extended state observer (PDESO) for linear parameter varying descriptor systems. The PDESO can simultaneously provide the estimates of the system states, sensor faults, and actuator faults. The Lâ‚‚ robust performance of the closed-loop system to bounded exogenous disturbance and bounded uncertainty is achieved by a two-step design procedure adapted from the traditional observer-based controller design. Furthermore, an LMI pole-placement region and the Lâ‚‚ robustness performance are combined into a multiobjective formulation by suitably combing the appropriate LMI descriptions. A parameter-varying system example is given to illustrate the design procedure and the validity of the proposed integrated design approach
    • …
    corecore