16 research outputs found

    Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    Get PDF
    Biological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate. In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons. We show that this type of network is inherently able to carry out asynchronous and event-driven neural computation, while performing identical to corresponding artificial neural networks (ANNs). In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations, while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes. Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN requires substantially fewer network updates as compared to the corresponding ANN

    Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    Get PDF
    Biological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on recent insights in neuroscience, we present an Adapting Spiking Neural Network (ASNN) based on adaptive spiking neurons. These spiking neurons efficiently encode information in spike-trains using a form of Asynchronous Pulsed Sigma-Delta coding while homeostatically optimizing their firing rate. In the proposed paradigm of spiking neuron computation, neural adaptation is tightly coupled to synaptic plasticity, to ensure that downstream neurons can correctly decode upstream spiking neurons. We show that this type of network is inherently able to carry out asynchronous and event-driven neural computation, while performing identical to corresponding artificial neural networks (ANNs). In particular, we show that these adaptive spiking neurons can be drop in replacements for ReLU neurons in standard feedforward ANNs comprised of such units. We demonstrate that this can also be successfully applied to a ReLU based deep convolutional neural network for classifying the MNIST dataset. The ASNN thus outperforms current Spiking Neural Networks (SNNs) implementations, while responding (up to) an order of magnitude faster and using an order of magnitude fewer spikes. Additionally, in a streaming setting where frames are continuously classified, we show that the ASNN requires substantially fewer network updates as compared to the corresponding ANN

    An ultra-low-power sigma-delta neuron circuit

    Full text link
    Neural processing systems typically represent data using leaky integrate and fire (LIF) neuron models that generate spikes or pulse trains at a rate proportional to their input amplitudes. This mechanism requires high firing rates when encoding time-varying signals, leading to increased power consumption. Neuromorphic systems that use adaptive LIF neuron models overcome this problem by encoding signals in the relative timing of their output spikes rather than their rate. In this paper, we analyze recent adaptive LIF neuron circuit implementations and highlight the analogies and differences between them and a first-order sigma-delta feedback loop. We propose a new sigma-delta neuron circuit that addresses some of the limitations in existing implementations and present simulation results that quantify the improvements. We show that the new circuit, implemented in a 1.8 V, 180 nm CMOS process, offers up to 42 dB signal-to-distortion ratio and consumes orders of magnitude lower energy. Finally, we also demonstrate how the sigma-delta interpretation enables mapping of real-valued recurrent neural network to the spiking framework to emphasize the envisioned application of the proposed circuit.Comment: Submitted to TCAS-II Briefs. Reference code online-https://github.com/manuvn/sigma-delta-neural-networks.gi

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    Dynamic Quantization using Spike Generation Mechanisms

    Get PDF
    This paper introduces a neuro-inspired co-ding/decoding mechanism of a constant real value by using a Spike Generation Mechanism (SGM) and a combination of two Spike Interpretation Mechanisms (SIM). One of the most efficient and widely used SGMs to encode a real value is the Leaky-Integrate and Fire (LIF) model which produces a spike train. The duration of the spike train is bounded by a given time constraint. Seeking for a simple solution of how to interpret the spike train and to reconstruct the input value, we combine two different kinds of SIMs, the time-SIM and the rate-SIM. The time-SIM allows a high quality interpretation of the neural code and the rate-SIM allows a simple decoding mechanism by couting the spikes. The resulting coding/decoding process, called the Dual-SIM Quantizer (Dual-SIMQ), is a non-uniform quantizer. It is shown that it coincides with a uniform scalar quantizer under certain assumptions. Finally, it is also shown that the time constraint can be used to control automatically the reconstruction accuracy of this time-dependent quantizer

    Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms.European Union's Horizon 2020 No 687299 NeuRAMEuropean Union's Horizon 2020 No 824164 HERMESMinisterio de EconomĂ­a y Competitividad TEC2015-63884-C2-1-

    Efficient Computation in Adaptive Artificial Spiking Neural Networks

    Get PDF
    Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using binary spikes. While artificial Spiking Neural Networks (SNNs) can be constructed by replacing the units of an ANN with spiking neurons, the current performance is far from that of deep ANNs on hard benchmarks and these SNNs use much higher firing rates compared to their biological counterparts, limiting their efficiency. Here we show how spiking neurons that employ an efficient form of neural coding can be used to construct SNNs that match high-performance ANNs and exceed state-of-the-art in SNNs on important benchmarks, while requiring much lower average firing rates. For this, we use spike-time coding based on the firing rate limiting adaptation phenomenon observed in biological spiking neurons. This phenomenon can be captured in adapting spiking neuron models, for which we derive the effective transfer function. Neural units in ANNs trained with this transfer function can be substituted directly with adaptive spiking neurons, and the resulting Adaptive SNNs (AdSNNs) can carry out inference in deep neural networks using up to an order of magnitude fewer spikes compared to previous SNNs. Adaptive spike-time coding additionally allows for the dynamic control of neural coding precision: we show how a simple model of arousal in AdSNNs further halves the average required firing rate and this notion naturally extends to other forms of attention. AdSNNs thus hold promise as a novel and efficient model for neural computation that naturally fits to temporally continuous and asynchronous applications
    corecore