1,183 research outputs found

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Development of Robust Control Techniques towards Damage Identification

    Get PDF
    Robust control techniques have enabled engineers to create uncertain models which are able to describe any differences between the model and experimental system with uncertainties defined as a combination of exogenous inputs and plant perturbations. Subsequently, robust model validation techniques arose to provide a guarantee that the uncertain model is able to recreate all observed experimental data. As a result, the complete model set is robust to any model inaccuracies or external noise. At the same time, the technique of model-based identification was developed in the robust control framework to identify the dynamics resulting from unmodeled or under-modeled components in mechanical systems. The approach controls the nominal model in order to minimize the error between its response and that of the experimentally identified system. The resulting controller estimates the difference in dynamics between the model and actual system, also known as the unmodeled dynamics. In this work, a damage identification technique is developed which combines model validation and model-based identification for robust control relevant structural health monitoring. The method will both detect the presence of damage and identify the local change in dynamics due to the damage in a robust control framework. As a result, the damage detection will be robust to mismodeling and noise. Additionally, the identified damage dynamics will be defined with an uncertainty bound which will serve the dual purpose of a definition for robust control and a quality estimation of the nominal damage dynamics. The new technique is demonstrated experimentally on a rotordynamic test rig. First, feasibility of the method is verified by the identification of a fully-open seeded crack in a non-rotating shaft. Finally, the precision of the method is demonstrated through identification of a breathing crack in a rotating shaft

    Development of Robust Control Techniques towards Damage Identification

    Get PDF
    Robust control techniques have enabled engineers to create uncertain models which are able to describe any differences between the model and experimental system with uncertainties defined as a combination of exogenous inputs and plant perturbations. Subsequently, robust model validation techniques arose to provide a guarantee that the uncertain model is able to recreate all observed experimental data. As a result, the complete model set is robust to any model inaccuracies or external noise. At the same time, the technique of model-based identification was developed in the robust control framework to identify the dynamics resulting from unmodeled or under-modeled components in mechanical systems. The approach controls the nominal model in order to minimize the error between its response and that of the experimentally identified system. The resulting controller estimates the difference in dynamics between the model and actual system, also known as the unmodeled dynamics. In this work, a damage identification technique is developed which combines model validation and model-based identification for robust control relevant structural health monitoring. The method will both detect the presence of damage and identify the local change in dynamics due to the damage in a robust control framework. As a result, the damage detection will be robust to mismodeling and noise. Additionally, the identified damage dynamics will be defined with an uncertainty bound which will serve the dual purpose of a definition for robust control and a quality estimation of the nominal damage dynamics. The new technique is demonstrated experimentally on a rotordynamic test rig. First, feasibility of the method is verified by the identification of a fully-open seeded crack in a non-rotating shaft. Finally, the precision of the method is demonstrated through identification of a breathing crack in a rotating shaft

    Development of Robust Control Techniques towards Damage Identification

    Get PDF
    Robust control techniques have enabled engineers to create uncertain models which are able to describe any differences between the model and experimental system with uncertainties defined as a combination of exogenous inputs and plant perturbations. Subsequently, robust model validation techniques arose to provide a guarantee that the uncertain model is able to recreate all observed experimental data. As a result, the complete model set is robust to any model inaccuracies or external noise. At the same time, the technique of model-based identification was developed in the robust control framework to identify the dynamics resulting from unmodeled or under-modeled components in mechanical systems. The approach controls the nominal model in order to minimize the error between its response and that of the experimentally identified system. The resulting controller estimates the difference in dynamics between the model and actual system, also known as the unmodeled dynamics. In this work, a damage identification technique is developed which combines model validation and model-based identification for robust control relevant structural health monitoring. The method will both detect the presence of damage and identify the local change in dynamics due to the damage in a robust control framework. As a result, the damage detection will be robust to mismodeling and noise. Additionally, the identified damage dynamics will be defined with an uncertainty bound which will serve the dual purpose of a definition for robust control and a quality estimation of the nominal damage dynamics. The new technique is demonstrated experimentally on a rotordynamic test rig. First, feasibility of the method is verified by the identification of a fully-open seeded crack in a non-rotating shaft. Finally, the precision of the method is demonstrated through identification of a breathing crack in a rotating shaft

    Uncertainty remodeling for robust control of linear time-invariant plants

    Get PDF
    The paper proposes a measure of robust performance based on frequency domain experimental data that allows non-conservative modeling of uncertainty. Given the nominal model of the plant and closed-loop performance specifications the iterative control design and remodeling of model uncertainty based on that measure leads to a controller with improved robust performance. The structured dynamic uncertainty is allowed to act on the nominal model in a linear fractional transformation (LFT) form. The proposed method is a modification of the structured singular value with implicit constraints on model consistency. The usefulness of the method is demonstrated on a vehicle control simulation example

    Model validation of aeroelastic system for robust flutter prediction

    Get PDF
    The problems of uncertainty modeling and model validation of aeroelastic system are investigated. The parametric uncertainty is considered to denote the uncertainties in structure, and both parametric form and unmodeled dynamics are used to represent the influences and mechanism of uncertainties in unsteady aerodynamic forces. The Linear Fractional Transformation representation of the uncertain aeroelastic system is established to perform model validation and robust flutter analysis. A testing method for the existence of a validating model set in frequency-domain is developed, then the model validating sets are parameterized and the problem of searching the uncertainty magnitudes can be formulated as an optimization process. The influence of exogenous disturbances and noise, which are inevitable in actual testing environment and commonly unknown but energy bounded is considered, and consequently the conservatism of the uncertainty bounds is reduced. At last, for the uncertain aeroelastic system with the obtained uncertainty magnitudes, the robust flutter analysis based on structured singular value theory is performed to predict the robust stability boundary. The comparison of the results associated with two different uncertainty descriptions and the influences of disturbance and noise are discussed. Two numerical examples are presented and the results of the simulation demonstrate the validity of the developed method

    Robust stability analysis of a dc/dc buck converter under multiple parametric uncertainties

    Get PDF
    Stability studies are a crucial part of the design of power electronic systems, especially for safety critical ap¬plications. Standard methods can guarantee stability under nominal conditions but do not take into account the multiple uncertainties that are inherent in the physical system or in the system model. These uncertainties, if unaccounted for, may lead to highly optimistic or even erroneous stability margins. The structured singular value-based method justifiably takes into account all possible uncertainties in the system. However, the application of the method to power electronic systems with multiple uncertainties is not widely discussed in the literature. This work presents practical approaches to applying the method in the robust stability analysis of such uncertain systems. Further, it reveals the significant impact of various types of parametric uncertainties on the reliability of stability assessments of power electronic systems. This is achieved by examining the robust stability margin of the dc/dc buck converter system, when it is subject to variations in system load, line resistance, operating temperature and uncertainties in the system model. The predictions are supported by time domain simulation and experimental results

    Combined system identification and robust control of a gimbal platform

    Get PDF
    Gimbaled imaging systems require very high performance inertial stabilization loops to achieve clear image acquisition, precise pointing, and tracking performance. Therefore, higher bandwidths become essential to meet recent increased performance demands. However, such systems often posses flexible dynamics around target bandwidth and time delay of gyroscope sensors which put certain limit to achievable bandwidths. For inertial stabilization loops, widely used design techniques have difficulty in achieving large bandwidth and satisfying required robustness simultaneously. Clearly, high performance control design hinges on accurate control-relevant model set. For that reason, combined system identification and robust control method is preferred. In the system identification step, accurate nominal model is obtained, which is suitable for subsequent robust control synthesis. Model validation based uncertainty modeling procedure constructs the robust-control-relevant uncertain model set, which facilitates the high performance controller design. Later, with skewed-mu synthesis, controller is designed which satisfies large bandwidth and robustness requirements. Finally, the experimental results show that significant performance improvement is achieved compared to common manual loop shaping methods. In addition, increased performance demands for new imaging systems are fulfilled
    corecore