324 research outputs found

    Data-Collection for the Sloan Digital Sky Survey: a Network-Flow Heuristic

    Full text link
    The goal of the Sloan Digital Sky Survey is ``to map in detail one-quarter of the entire sky, determining the positions and absolute brightnesses of more than 100 million celestial objects''. The survey will be performed by taking ``snapshots'' through a large telescope. Each snapshot can capture up to 600 objects from a small circle of the sky. This paper describes the design and implementation of the algorithm that is being used to determine the snapshots so as to minimize their number. The problem is NP-hard in general; the algorithm described is a heuristic, based on Lagriangian-relaxation and min-cost network flow. It gets within 5-15% of a naive lower bound, whereas using a ``uniform'' cover only gets within 25-35%.Comment: proceedings version appeared in ACM-SIAM Symposium on Discrete Algorithms (1998

    Computational Geometry Column 38

    Get PDF
    Recent results on curve reconstruction are described.Comment: 3 pages, 1 figure, 18 ref

    Engineering DFS-Based Graph Algorithms

    Full text link
    Depth-first search (DFS) is the basis for many efficient graph algorithms. We introduce general techniques for the efficient implementation of DFS-based graph algorithms and exemplify them on three algorithms for computing strongly connected components. The techniques lead to speed-ups by a factor of two to three compared to the implementations provided by LEDA and BOOST. We have obtained similar speed-ups for biconnected components algorithms. We also compare the graph data types of LEDA and BOOST

    Recent progress in exact geometric computation

    Get PDF
    AbstractComputational geometry has produced an impressive wealth of efficient algorithms. The robust implementation of these algorithms remains a major issue. Among the many proposed approaches for solving numerical non-robustness, Exact Geometric Computation (EGC) has emerged as one of the most successful. This survey describes recent progress in EGC research in three key areas: constructive zero bounds, approximate expression evaluation and numerical filters

    Lower Critical Dimension of Ising Spin Glasses

    Full text link
    Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimodal (+- J) distributions of the disorder are calculated using a ``matching'' algorithm, which allows large system sizes of up to N=480^2 spins to be investigated. We study domain walls induced by two rather different types of boundary-condition changes, and, in each case, analyze the system-size dependence of an appropriately defined ``defect energy'', which we denote by DE. For Gaussian disorder, we find a power-law behavior DE ~ L^\theta, with \theta=-0.266(2) and \theta=-0.282(2) for the two types of boundary condition changes. These results are in reasonable agreement with each other, allowing for small systematic effects. They also agree well with earlier work on smaller sizes. The negative value indicates that two dimensions is below the lower critical dimension d_c. For the +-J model, we obtain a different result, namely the domain-wall energy saturates at a nonzero value for L\to \infty, so \theta = 0, indicating that the lower critical dimension for the +-J model exactly d_c=2.Comment: 4 pages, 4 figures, 1 table, revte
    corecore