3,006 research outputs found

    Fast and robust road sign detection in driver assistance systems

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Road sign detection plays a critical role in automatic driver assistance systems. Road signs possess a number of unique visual qualities in images due to their specific colors and symmetric shapes. In this paper, road signs are detected by a two-level hierarchical framework that considers both color and shape of the signs. To address the problem of low image contrast, we propose a new color visual saliency segmentation algorithm, which uses the ratios of enhanced and normalized color values to capture color information. To improve computation efficiency and reduce false alarm rate, we modify the fast radial symmetry transform (RST) algorithm, and propose to use an edge pairwise voting scheme to group feature points based on their underlying symmetry in the candidate regions. Experimental results on several benchmarking datasets demonstrate the superiority of our method over the state-of-the-arts on both efficiency and robustness

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Impact of Traffic Sign Diversity on Autonomous Vehicles: A Literature Review

    Get PDF
    Traffic sign classification is indispensable for road traffic systems, including automated ones. There is a fundamental difference in the visual appearance of traffic signs from one country to another. Each dataset has its design standards and regulations based on shape, color, and information content, making implementing classification and recognition techniques more difficult. This paper aims to assess the influence of traffic sign diversity on autonomous vehicles (AVs) by reviewing several previous studies, comparing, summarizing their results, and focusing on classifying and detecting traffic sign datasets based on color, shape, and deep learning spaces using various methods and applications. Furthermore, it covers the main challenges facing road designers and planners considering changes to road safety infrastructure. It will be argued that compiling and standardizing a comprehensive global database of traffic signs is very difficult because it is costly and complex in application. However, it is still one of the possible solutions for the coming decades. Recommendations for future developments are also presented in this study

    DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications

    Full text link
    Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. These networks have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare the performance of the CNN with that of two baseline classifiers. The results show that the performance of DeepSphere is always superior or equal to both of these baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than those baselines. Finally, we show how learned filters can be visualized to introspect the neural network.Comment: arXiv admin note: text overlap with arXiv:astro-ph/0409513 by other author

    Reconnaissance d'objets multiclasses pour des applications d'aide à la conduite et de vidéo surveillance

    No full text
    Co-encadrement de la thèse : Bogdan StanciulescuPedestrian Detection and Traffic Sign Recognition (TSR) are important components of an Advanced Driver Assistance System (ADAS). This thesis presents two methods for eliminating false alarms in pedestrian detection applications and a novel three stage approach for TSR. Our TSR approch consists of a color segmentation, a shape detection and a content classification phase. The red color enhancement is improved by using an adaptive threshold. The performance of the K-d tree is augmented by introducing a spatial weighting. The Random Forests yield a classification accuracy of 97% on the German Traffic Sign Recognition Benchmark. Moreover, the processing and memory requirements are reduced by employing a feature space reduction. The classifiers attain an equally high classification rate using only a fraction of the feature dimension, selected using the Random Forest or Fisher's Criterion. This technique is also validated on two different multiclass benchmarks: ETH80 and Caltech 101. Further, in a static camera video surveillance application, the immobile false positives, such as trees and poles, are eliminated using the correlation measure over several frames. The recurring false alarms in the pedestrian detection in the scope of an embedded ADAS application are removed using a complementary tree filter.La détection de piétons et la reconnaissance des panneaux routiers sont des fonctions importantes des systèmes d'aide à la conduite (anglais : Advanced Driver Assistance System - ADAS). Une nouvelle approche pour la reconnaissance des panneaux et deux méthodes d'élimination de fausses alarmes dans des applications de détection de piétons sont présentées dans cette thèse. Notre approche de reconnaissance de panneaux consiste en trois phases: une segmentation de couleurs, une détection de formes et une classification du contenu. Le color enhancement des régions rouges est amélioré en introduisant un seuil adaptatif. Dans la phase de classification, la performance du K-d tree est augmentée en utilisant un poids spatial. Les Random Forests obtiennent un taux de classification de 97% sur le benchmark allemand de la reconnaissance des panneaux routiers (German Traffic Sign Recognition Benchmark). Les besoins en mémoire et calcul sont réduits en employant une réduction de la dimension des caractéristiques. Les classifieurs atteignent un taux de classification aussi haut qu'avec une fraction de la dimension des caractéristiques, selectionée en utilisant des Random Forests ou Fisher's Crtierion. Cette technique est validée sur deux benchmarks d'images multiclasses : ETH80 et Caltech 101. Dans une application de vidéo surveillance avec des caméras statiques, les fausses alarmes des objets fixes, comme les arbres et les lampadaires, sont éliminées avec la corrélation sur plusieurs trames. Les fausses alarmes récurrentes sont supprimées par un filtre complémentaire en forme d'arbre

    VEHICLE MODEL RECOGNITION BASED ON USING IMAGE PROCESSING AND WAVELET ANALYSIS

    Full text link

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans
    • …
    corecore