8,036 research outputs found

    Stacking of IGBT devices for fast high-voltage high-current applications

    Get PDF
    The development of solid-state switches for pulsed power applications has been of considerable interest since high-power semiconductor devices became available. However, the use of solid-state devices in the pulsed power environment has usually been restricted by device limitations in either their voltage/current ratings or their switching speed. The stacking of fast medium-voltage devices, such as IGBTs, to improve the voltage rating, makes solid-state switches a potential substitute for conventional switches such as hard glass tubes, thyratrons and spark gaps. Previous studies into stacking IGBTs have been concerned with specific devices, designed or modified particularly for a specific application. The present study is concerned with stacking fast and commercially available IGBTs and their application to the generation of pulsed electric field and the switching of a high intensity Xenon flashlamp. The aim of the first section of the present study was to investigate different solid-state switching devices with a stacking capability and this led to the choice of the Insulated Gate Bipolar Transistor (IGBT). It was found that the collector-emitter voltage decreases in two stages in most of the available IGBTs. Experiments and simulation showed that a reason for this behaviour could be fast variations in device parasitic parameters particularly gate-collector capacitance. Choosing the proper IGBT, as well as dealing with problems such as unbalanced voltage and current sharing, are important aspects of stacking and these were reported in this study. Dynamic and steady state voltage imbalances caused by gate driver delay was controlled using an array of synchronised pulses, isolated with magnetic and optical coupling. The design procedure for pulse transformers, optical modules, the drive circuits required to minimise possible jitter and time delays, and over-voltage protection of IGBT modules are also important aspects of stacking, and were reported in this study. The second purpose of this study was to investigate the switching performance of both magnetically coupled and optically coupled stacks, in pulse power applications such as Pulse Electric Field (PEF) inactivation of microorganisms and UV light inactivation of food-related pathogenic bacteria. The stack, consisting of 50 1.2 kV IGBTs with the voltage and current capabilities of 10 kV, 400 A, was incorporated into a coaxial cable Blumlein type pulse - generator and its performance was successfully tested with both magnetic and optical coupling. As a second application of the switch, a fully integrated solid-state Marx generator was designed and assembled to drive a UV flashlamp for the purpose of microbiological inactivation. The generator has an output voltage rating of 3 kV and a peak current rating of 2 kA, although the modular approach taken allows for a number of voltage and current ratings to be achieved. The performance of the switch was successfully tested over a period of more than 10⁶ pulses when it was applied to pulse a xenon flashlamp.The development of solid-state switches for pulsed power applications has been of considerable interest since high-power semiconductor devices became available. However, the use of solid-state devices in the pulsed power environment has usually been restricted by device limitations in either their voltage/current ratings or their switching speed. The stacking of fast medium-voltage devices, such as IGBTs, to improve the voltage rating, makes solid-state switches a potential substitute for conventional switches such as hard glass tubes, thyratrons and spark gaps. Previous studies into stacking IGBTs have been concerned with specific devices, designed or modified particularly for a specific application. The present study is concerned with stacking fast and commercially available IGBTs and their application to the generation of pulsed electric field and the switching of a high intensity Xenon flashlamp. The aim of the first section of the present study was to investigate different solid-state switching devices with a stacking capability and this led to the choice of the Insulated Gate Bipolar Transistor (IGBT). It was found that the collector-emitter voltage decreases in two stages in most of the available IGBTs. Experiments and simulation showed that a reason for this behaviour could be fast variations in device parasitic parameters particularly gate-collector capacitance. Choosing the proper IGBT, as well as dealing with problems such as unbalanced voltage and current sharing, are important aspects of stacking and these were reported in this study. Dynamic and steady state voltage imbalances caused by gate driver delay was controlled using an array of synchronised pulses, isolated with magnetic and optical coupling. The design procedure for pulse transformers, optical modules, the drive circuits required to minimise possible jitter and time delays, and over-voltage protection of IGBT modules are also important aspects of stacking, and were reported in this study. The second purpose of this study was to investigate the switching performance of both magnetically coupled and optically coupled stacks, in pulse power applications such as Pulse Electric Field (PEF) inactivation of microorganisms and UV light inactivation of food-related pathogenic bacteria. The stack, consisting of 50 1.2 kV IGBTs with the voltage and current capabilities of 10 kV, 400 A, was incorporated into a coaxial cable Blumlein type pulse - generator and its performance was successfully tested with both magnetic and optical coupling. As a second application of the switch, a fully integrated solid-state Marx generator was designed and assembled to drive a UV flashlamp for the purpose of microbiological inactivation. The generator has an output voltage rating of 3 kV and a peak current rating of 2 kA, although the modular approach taken allows for a number of voltage and current ratings to be achieved. The performance of the switch was successfully tested over a period of more than 10⁶ pulses when it was applied to pulse a xenon flashlamp

    Study of the electrical system of a commercial aircraft: development of a numerical simulation model

    Get PDF
    The need of electric power on aircraft has been growing from few VA of the engine ignition system of early aircraft such as the Wright flyer to almost 1 MVA for large long range commercial aircraft as for example the B747 or the A380. As aircraft is becoming more electric, the electric power system becomes increasingly critical. For this project I managed to study and develop a simulation model of the electrical system of a commercial aircraft, exactly based on the Airbus A320, to be used in electrical engineering and aerospace engineering courses in the near future

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Nd:YAG development for spaceborne laser ranging system

    Get PDF
    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses

    H.E.A.T. - Home Energy Automation Technology

    Get PDF
    The purpose of this project is to explore residential household climate control systems and develop a viable product concept that integrates any and all heating, ventilation, and air conditioning (HVAC) sources into an automated electronic control system. This project will incorporate a microcontroller-based modular system that provides multiple communication mediums to adapt to most household configurations. This system will utilize a web-based control server that implements efficient climate control algorithms, resulting in improved heating and cooling efficiency for residential and small-business consumers

    Sensitivity of Sub-Bandgap External Quantum Efficiency Measurements of Solar Cells under Electrical and Light Bias

    Get PDF
    The measurement of the external quantum efficiency (EQE) for photocurrent generation at photon energies below the bandgap of semiconductors has always been an important tool for understanding phenomena such as charge photogeneration via tail and trap states. The shape of the subgap EQE can also reveal the subtle but important physics of inter- and intramolecular states that lay at the heart of charge photogeneration in molecular systems such as organic semiconductors. In this work, we examine the influence of optical and electrical noise on the sensitivity of EQE measurements under different electrical and optical bias conditions and demonstrate how to enhance the dynamic range to an unprecedented >100 dB. We identify and study several apparatus-and-device-related factors limiting the sensitivity including: the electrical noise floor of the measurement system; flicker and pick-up noise; probe light source stray light; the photon noise of the light bias source; the electrical noise of the voltage bias source; and the shunt-resistance-limited thermal and electrical shot noise of the device. By understanding and minimizing the influence of these factors we are able to detect EQE signals derived from weak subgap absorption features in both organic and inorganic solar cell systems at photon energies well below their bandgaps

    High-Voltage Integrated Circuits design and validation for automotive applications

    Get PDF
    Electronic Integrated Circuits (ICs) are an important pillar of the automotive market, especially since legal and safety requirements have been introduced to manage vehicles emissions and behaviors. Furthermore, the harsh environment and the tight safety requirements, summed with the market that is pushing to reduce the development lead time and to increase the system complexity, require to develop dedicated ICs for the automotive applications. This thesis presents some peculiar high-power and high-voltage ICs for automotive applications that have been studied, designed and developed taking into account all the requirements that automotive grade ICs have to respect, with emphasis on performance, quality and safety aspects. Particularly the thesis reports the design and validation of power management blocks and output drivers for inductive loads, showing how to fulfill in an effective way the performance, quality and safety targets according to the guidelines and the constraints of the latest automotive standards, like ISO26262 and AEC-Q100. All the designed ICs has been simulated and manufactured, including layout drawings, in a 0.35um HV-CMOS technology from AMS. The effectiveness and robustness of the proposed circuits has been validated on silicon and corresponded measurement results has been reported
    corecore