4 research outputs found

    NASA Tech Briefs, March 1988

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences

    Research and technology at Kennedy Space Center

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report

    LED forward current errors induced in video display tile's PCB

    No full text

    Multimode optical waveguides and lightguides for backplane interconnection and laser illuminated display systems

    Get PDF
    The aim of the research in this thesis was to design, model, analyse and experimentally test multimode optical waveguides and lightguides for manipulating infrared light for optical backplane interconnections and visible light for laser illuminated display systems. Optical Input/Output Coupling loss at the entry and exit of polymer waveguides depends on optical scattering due to end facet roughness. The input/output coupling loss was measured for different end facet roughness magnitudes and the waveguide surface profiles due to different cutting methods (dicing saw and three milling routers) were compared. The effect of the number of cutting edges on the router, the rotation rate and translation (cutting) speed of the milling routers on the waveguide end facet roughness was established. A further new method for reducing the end facet roughness and so the coupling loss, by curing a layer of core material at the end of the waveguide to cover the roughness fluctuations, was proposed and successfully demonstrated giving the best results reported to date resulting in an improvement of 2.8 dB, even better than those obtained by use of index matching fluid which is impractical in commercial systems. The insertion loss due to waveguide crossing having various crossing angles was calculated using a beam propagation method and ray tracing simulations and compared to experimental measurements. Differences between the results were resolved leading to an understanding that only low order waveguide modes at no more than 6 degrees to the axis were propagating inside the waveguide. Several different optical designs of multimode waveguide for the light engine of a 3D autostereoscopic laser illuminated display system were proposed. Each design performed the functions of laser beam combining, beam shaping and beam homogenizing and the best method was selected, designed, modelled, tested, and implemented in the system. The waveguide material was inspected using spectroscopy to establish the effect of high power optical density on the material performance showing an increased loss particularly in the shorter wavelengths. The effect of waveguide dimensions on the speckle pattern was investigated experimentally and the speckle contrast was reduced to below the threshold of human perception. Speckle contrast was also recorded for the first time along the axis of the 3D display system and normal to it in the viewing area and the speckle characteristics at each stage were investigated. New algorithms for analysing speckle were used and the perceptual ability of human eyes to detect speckle size and contrast were taken into account to minimise perceived speckle patterns. The effect of the core diameter of optical fibres on the speckle pattern was investigated and it was shown that the speckle spot diameter is reduced by increasing the fibre core diameter. Based on this experiment, it was suggested that speckle reduction is more effective if the optical fibre used in the display system has larger diameter. Therefore, a slab waveguide of 1 mm thickness and 20 m width was used for laser beam combining, homogenising and beam shaping and a uniformity of 84% was achieved with just 75 mm length. The speckle was also completely removed at the output of the waveguid
    corecore