753 research outputs found

    MODLEACH: A Variant of LEACH for WSNs

    Full text link
    Wireless sensor networks are appearing as an emerging need for mankind. Though, Such networks are still in research phase however, they have high potential to be applied in almost every field of life. Lots of research is done and a lot more is awaiting to be standardized. In this work, cluster based routing in wireless sensor networks is studied precisely. Further, we modify one of the most prominent wireless sensor network's routing protocol "LEACH" as modified LEACH (MODLEACH) by introducing \emph{efficient cluster head replacement scheme} and \emph{dual transmitting power levels}. Our modified LEACH, in comparison with LEACH out performs it using metrics of cluster head formation, through put and network life. Afterwards, hard and soft thresholds are implemented on modified LEACH (MODLEACH) that boast the performance even more. Finally a brief performance analysis of LEACH, Modified LEACH (MODLEACH), MODLEACH with hard threshold (MODLEACHHT) and MODLEACH with soft threshold (MODLEACHST) is undertaken considering metrics of throughput, network life and cluster head replacements.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    CENTRALIZED SECURITY PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSN) is an exciting new technology with applications in military, industry, and healthcare. These applications manage sensitive information in potentially hostile environments. Security is a necessity, but building a WSN protocol is difficult. Nodes are energy and memory constrained devices intended to last months. Attackers are physically able to compromise nodes and attack the network from within. The solution is Centralized Secure Low Energy Adaptive Clustering Hierarchy (CSLEACH). CSLEACH provides security, energy efficiency, and memory efficiency. CSLEACH takes a centralized approach by leveraging the gateways resources to extend the life of a network as well as provide trust management. Using a custom event based simulator, I am able to show CSLEACH\u27s trust protocol is more energy efficient and requires less memory per node than Trust-based LEACH (TLEACH). In terms of security, CSLEACH is able to protect against a wide range of attacks from spoofed messages to compromised node attacks and it provides confidentiality, authentication, integrity and freshness

    Performance Review of Selected Topology-Aware Routing Strategies for Clustering Sensor Networks

    Get PDF
    In this paper, cluster-based routing (CBR) protocols for addressing issues pertinent to energy consumption, network lifespan, resource allocation and network coverage are reviewed. The paper presents an indepth  performance analysis and critical review of selected CBR algorithms. The study is domain-specific and simulation-based with emphasis on the tripartite trade-off between coverage, connectivity and lifespan. The rigorous statistical analysis of selected CBR schemes was also presented. Network simulation was conducted with Java-based Atarraya discrete-event simulation toolkit while statistical analysis was carried out using MATLAB. It was observed that the Periodic, Event-Driven and Query-Based Routing (PEQ) schemes performs better than Low-Energy Adaptive Clustering Hierarchy (LEACH), Threshold-Sensitive Energy-Efficient Sensor Network (TEEN) and Geographic Adaptive Fidelity (GAF) in terms of network lifespan, energy consumption and network throughput.Keywords: Wireless sensor network, Hierarchical topologies, Cluster-based routing, Statistical analysis, Network simulatio

    Elastic hybrid MAC protocol for wireless sensor networks

    Get PDF
    The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol

    A multi-hop routing protocol for an energy-efficient in wireless sensor network

    Get PDF
    The low-energy adaptive clustering hierarchy (LEACH) protocol has been developed to be implemented in wireless sensor networks (WSNs) systems such as healthcare and military systems. LEACH protocol depends on clustering the employed sensors and electing one cluster head (CH) for each cluster. The CH nodes are changed periodically to evenly distribute the energy load among sensors. Updating the CH node requires electing different CH and re-clustering sensors. This process consumes sensors’ energy due to sending and receiving many broadcast and unicast messages thus reduces the network lifetime, which is regarded as a significant issue in LEACH. This research develops a new approach based on modifying the LEACH protocol to minimize the need of updating the cluster head. The proposal aims to extend the WSN’s lifetime by maintaining the sensor nodes’ energy. The suggested approach has been evaluated and shown remarkable efficiency in comparison with basic LEACH protocol and not-clustered protocol in terms of extending network lifetime and reducing the required sent messages in the network reflected by 15%, and, in addition, reducing the need to reformatting the clusters frequently and saving network resources
    • …
    corecore