315 research outputs found

    LDPC codes from the Hermitian curve

    Get PDF
    In this paper, we study the code C which has as parity check matrix H the incidence matrix of the design of the Hermitian curve and its (q + 1)-secants. This code is known to have good performance with an iterative decoding algorithm, as shown by Johnson and Weller in ( Proceedings at the ICEE Globe com conference, Sanfrancisco, CA, 2003). We shall prove that C has a double cyclic structure and that by shortening in a suitable way H it is possible to obtain new codes which have higher code-rate. We shall also present a simple way to constructing the matrix H via a geometric approach

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Incidence structures from the blown-up plane and LDPC codes

    Get PDF
    In this article, new regular incidence structures are presented. They arise from sets of conics in the affine plane blown-up at its rational points. The LDPC codes given by these incidence matrices are studied. These sparse incidence matrices turn out to be redundant, which means that their number of rows exceeds their rank. Such a feature is absent from random LDPC codes and is in general interesting for the efficiency of iterative decoding. The performance of some codes under iterative decoding is tested. Some of them turn out to perform better than regular Gallager codes having similar rate and row weight.Comment: 31 pages, 10 figure

    Labeling Diversity for 2x2 WLAN Coded-Cooperative Networks

    Get PDF
    Labelling diversity is an efficient technique recently proposed in the literature and aims to improve the bit error rate(BER) performance of wireless local area network (WLAN) systems with two transmit and two receive antennas without increasing the transmit power and bandwidth requirements. In this paper, we employ labelling diversity with different space-time channel codes such as convolutional, turbo and low density parity check (LDPC) for both point-to-point and coded-cooperative communication scenarios. Joint iterative decoding schemes for distributed turbo and LDPC codes are also presented. BER performance bounds at an error floor (EF) region are derived and verified with the help of numerical simulations for both cooperative and non-cooperative schemes. Numerical simulations show that the coded-cooperative schemes with labelling diversity achieve better BER performances and use of labelling diversity at the source node significantly lowers relay outage probability and hence the overall BER performance of the coded-cooperative scheme is improved manifolds

    Intertwined results on linear codes and Galois geometries

    Get PDF

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    • …
    corecore