255 research outputs found

    Efficient LDO-Assisted DC/DC buck converter for integrated power management system

    Get PDF
    DC-DC Switching Converters; Voltage Linear Regulators; Linear-Assisted DC-DC Voltage Regulators.Postprint (published version

    Cascaded Voltage Clamping and LDO Offline Power Supply

    Get PDF
    Offline power supplies are necessary for any sort of electronic device that utilizes wall power. For offline power supplies, it is a common practice to use the switching mode method where the high voltage AC input is first rectified and then switched at high frequency to a much lower voltage. This method has been known to be very efficient. Also, it’s more efficient than a linear supply method where the AC input is stepped down and then linearly regulated down to a low voltage. Despite the efficiency benefit, the switching method employs a high frequency transformer and inductor. This will make the design relatively costly and bulky (especially at a very low output power). This project will look into a new method of producing a low DC voltage from a high AC input voltage. The method utilizes a switch that prevents the power supply to charge a rectifier capacitor filter all the way up to the peak of the AC input voltage. Rather, the input is clamped at a much lower voltage that is closer to the output voltage such that a low dropout (LDO) regulator could be used; thus, avoiding the use of an inductor while maintaining the high efficiency. The proposed design was tested through LTSpice simulation and results demonstrated the functionality of the design in achieving the desired output voltage. The efficiency of the power supply with the proposed input clamping and LDO method was measured to be above 70% at full load. Construction of a prototype for the proposed design was planned but was not carried out due to the COVID-19 pandemic

    An Overview of Fully Integrated Switching Power Converters Based on Switched-Capacitor versus Inductive Approach and Their Advanced Control Aspects

    Get PDF
    This paper reviews and discusses the state of the art of integrated switched-capacitor and integrated inductive power converters and provides a perspective on progress towards the realization of efficient and fully integrated DC–DC power conversion. A comparative assessment has been presented to review the salient features in the utilization of transistor technology between the switched-capacitor and switched inductor converter-based approaches. First, applications that drive the need for integrated switching power converters are introduced, and further implementation issues to be addressed also are discussed. Second, different control and modulation strategies applied to integrated switched-capacitor (voltage conversion ratio control, duty cycle control, switching frequency modulation, Ron modulation, and series low drop out) and inductive converters (pulse width modulation and pulse frequency modulation) are then discussed. Finally, a complete set of integrated power converters are related in terms of their conditions and operation metrics, thereby allowing a categorization to provide the suitability of converter technologies

    Analysis on Supercapacitor Assisted Low Dropout (SCALDO) Regulators

    Get PDF
    State-of-the-art electronic systems employ three fundamental techniques for DC-DC converters: (a) switch-mode power supplies (SMPS); (b) linear power supplies; (c) switched capacitor (charge pump) converters. In practical systems, these three techniques are mixed to provide a complex, but elegant, overall solution, with energy efficiency, effective PCB footprint, noise and transient performance to suit different electronic circuit blocks. Switching regulators have relatively high end-to-end efficiency, in the range of 70 to 93%, but can have issues with output noise and EMI/RFI emissions. Switched capacitor converters use a set of capacitors for energy storage and conversion. In general, linear regulators have low efficiencies in the range 30 to 60%. However, they have outstanding output characteristics such as low noise, excellent transient response to load current fluctuations, design simplicity and low cost design which are far superior to SMPS. Given the complex situation in switch-mode converters, low dropout (LDO) regulators were introduced to address the equirements of noise-sensitive and fast transient loads in portable devices. A typical commercial off-the-shelf LDO has its input voltage slightly higher than the desired regulated output for optimal efficiency. The approximate efficiency of a linear regulator, if the power consumed by the control circuits is negligible, can be expressed by the ratio of Vo/Vin. A very low frequency supercapacitor circulation technique can be combined with commercial low dropout regulator ICs to significantly increase the end-to-end efficiency by a multiplication factor in the range of 1.33 to 3, compared to the efficiency of a linear regulator circuit with the same input-output voltages. In this patented supercapacitor-assisted low dropout (SCALDO) regulator technique developed by a research team at the University of Waikato, supercapacitors are used as lossless voltage droppers, and the energy reuse occurs at very low frequencies in the range of less than ten hertz, eliminating RFI/EMI concerns. This SCALDO technique opens up a new approach to design step-down, DC-DC converters suitable for processor power supplies with very high end-to-end efficiency which is closer to the efficiencies of practical switching regulators, while maintaining the superior output specifications of a linear design. Furthermore, it is important to emphasize that the SCALDO technique is not a variation of well-known switched capacitor DC-DC converters. In this thesis, the basic SCALDO concept is further developed to achieve generalised topologies, with the relevant theory that can be applied to a converter with any input-output step-down voltage combination. For these generalised topologies, some important design parameters, such as the number of supercapacitors, switching matrix details and efficiency improvement factors, are derived to form the basis of designing SCALDO regulators. With the availability of commercial LDO ICs with output current ratings up to 10 A, and thin-prole supercapacitors with DC voltage ratings from 2.3 to 5.5 V, several practically useful, medium-current SCALDO prototypes: 12V-to-5V, 5V-to-2V, 5.5V-to-3.3V have been developed. Experimental studies were carried out on these SCALDO prototypes to quantify performance in terms of line regulation, load regulation, efficiency and transient response. In order to accurately predict the performance and associated waveforms of the individual phases (charge, discharge and transition) of the SCALDO regulator, Laplace transform-based theory for supercapacitor circulation is developed, and analytical predictions are compared with experimental measurements for a 12V-to-5V prototype. The analytical results tallied well with the practical waveforms observed in a 12V-to-5V converter, indicating that the SCALDO technique can be generalized to other versatile configurations, and confirming that the simplified assumptions used to describe the circuit elements are reasonable and justifiable. After analysing the performance of several SCALDO prototypes, some practical issues in designing SCALDO regulators have been identified. These relate to power losses and implications for future development of the SCALDO design

    Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage Regulator

    Get PDF
    abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required. The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking. The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Potential of supercapacitors in novel power converters as semi-ideal lossless voltage droppers

    Get PDF
    Electrical physics text book theory tells us that charging a capacitor is much less efficient than replenishing the energy in a discharged electro-chemical battery. If a fully discharged capacitor is pumped with a charge of Q coulombs, it stores 1/2QV while dissipating the same amount of energy in the loop resistance. However, if the same charge is pumped into a re-chargeable electrochemical cell of voltage V the energy stored in the cell is QV, while the wasted energy is determined by the loop resistance and the voltage difference across the resistance. If a rechargeable battery pack is to be replaced by a supercapacitor module, this difference could seriously affect the design of power converters required, since the power converter should stop charging at a certain point to avoid overcharging the capacitor bank. However, if a useful resistive load such as heater, DC-DC converter, inverter or a lamp load is used as a part of the loop resistance in a capacitor charging loop, a significant part of this loss can be recovered. One example of this is in the supercapacitor assisted low drop-out regulator (SCALDO) technique. This paper will detail the concept of circumvention of RC loop charging loss, theoretically quantifying the same in a generalized circuit, demonstrating how this can be applied in completely novel circuit topologies such as the supercapacitor assisted LED (SCALED) converter. The paper will provide experimental results of selected SCALDO implementations and early results of SCALED technique to support this theory
    • 

    corecore